[1] |
Vlachogiannis G,Hedayat S,Vatsiou AA, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926.
|
[2] |
Katsuda T,Kawamata M,Hagiwara KA, et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity[J]. Cell Stem Cell, 2017, 20(1):41-55.
|
[3] |
Voges HK,Mills RJ,Elliott DA, et al. Development of a human cardiac organoid injury model reveals innate regenerative potential[J]. Development, 2017, 144(6):1118-1127.
|
[4] |
Takasato M,Er PX,Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526(7574):564-568.
|
[5] |
Huch M,Gehart H,Van Boxtel R, et al. Long-Term culture of Genome-Stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1/2):299-312.
|
[6] |
Pauli C,Hopkins BD,Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5):462-477.
|
[7] |
Van De Wetering M,Francies HE,Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4):933-945.
|
[8] |
Fujii M,Shimokawa M,Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis[J]. Cell Stem Cell, 2016, 18(6):827-838.
|
[9] |
Dekkers JF,Berkers G,Kruisselbrink EA, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis[J]. Sci Transl Med, 2016, 8(344):344ra84.
|
[10] |
Di Lullo E,Kriegstein AR. The use of brain organoids to investigate neural development and disease[J]. Nat Rev Neurosci, 2017, 18(10):573-584.
|
[11] |
Li Y,Muffat J,Omer A, et al. Induction of expansion and folding in human cerebral organoids[J]. Cell Stem Cell, 2017, 20(3):385-396.
|
[12] |
Firth AL,Menon T,Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs[J]. Cell Rep, 2015, 12(9):1385-1390.
|
[13] |
Ettayebi K,Crawford SE,Murakami K, et al. Replication of human noroviruses in stem cell-derived human enteroids[J]. Science, 2016, 353(6306):1387-1393.
|
[14] |
Watanabe M,Buth JE,Vishlaghi N, et al. Self-Organized cerebral organoids with Human-Specific features predict effective drugs to combat Zika virus infection[J]. Cell Rep, 2017, 21(2):517-532.
|
[15] |
Grabowski JM,Offerdahl DK,Bloom ME. The use of Ex vivo organ cultures in Tick-Borne virus research[J]. ACS Infect Dis, 2018, 4(3):247-256.
|
[16] |
Jin MZ,Han RR,Qiu GZ, et al. Organoids: An intermediate modeling platform in precision oncology[J]. Cancer Lett, 2018, 414:174-180.
|
[17] |
Es HA,Montazeri L,Aref AR, et al. Personalized cancer medicine: an organoid approach[J]. Trends Biotechnol, 2018, 36(4):358-371.
|
[18] |
Seidlitz T,Merker SR,Rothe AA, et al. Human gastric cancer modelling using organoids[J]. Gut, 2019, 68(2):207-217.
|
[19] |
Gao D,Vela I,Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1):176-187.
|
[20] |
Mariani J,Coppola G,Zhang P, et al. FOXG1-Dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders[J]. Cell, 2015, 162(2):375-390.
|
[21] |
Birey F,Andersen J,Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652):54.
|
[22] |
Mccracken KW,Cata EM,Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids[J]. Nature, 2014, 516(7531):400.
|
[23] |
Quadrato G,Nguyen T,Macosko EZ, et al. Cell diversity and network dynamics in photosensitive human brain organoids[J]. Nature, 2017, 545(7652):48-53.
|
[24] |
Chen YW,Huang SX,de Carvalho ALRT, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells[J]. Nat Cell Biol, 2017, 19(5):542-549.
|
[25] |
Nie YZ,Zheng YW,Ogawa M, et al. Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure[J]. Stem Cell Res Ther, 2018, 9(1):5-17.
|
[26] |
Sampaziotis F,Justin AW,Tysoe OC, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nat Med, 2017, 23(8):954.
|
[27] |
Loomans CJ,Giuliani NW,Balak J, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential[J]. Stem Cell Reports, 2018, 10(3):712-724.
|
[28] |
Shahjalal HM,Dayem AA,Lim KM, et al. Generation of pancreatic cells for treatment of diabetes: advances and challenges[J]. Stem Cell Res Ther, 2018, 9(1):355.
|
[29] |
Llonch S,Carido M,Ader M. Organoid technology for retinal repair[J]. Dev Biol, 2018, 433(2, SI):132-143.
|
[30] |
Deng WL,Gao ML,Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-Derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4):1267-1281.
|