切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 54 -57. doi: 10.3877/cma.j.issn.2095-1221.2019.01.011

所属专题: 文献

综述

心肌球源性细胞在心力衰竭中的应用
林嘉润1, 廖联明2,()   
  1. 1. 550004 贵阳,贵州医科大学临床医学院2015级
    2. 350001 福州,福建医科大学附属协和医院中心实验室
  • 收稿日期:2018-10-10 出版日期:2019-02-01
  • 通信作者: 廖联明

Application of cardiosphere-derived cells in ischemic heart failure

Jiarun Lin1, Lianming Liao2,()   

  1. 1. Clinical Medical College, Guizhou Medcial University, Guiyang 550000, China; Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, China
  • Received:2018-10-10 Published:2019-02-01
  • Corresponding author: Lianming Liao
  • About author:
    Corresponding author:Liao Lianming, Email:
引用本文:

林嘉润, 廖联明. 心肌球源性细胞在心力衰竭中的应用[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 54-57.

Jiarun Lin, Lianming Liao. Application of cardiosphere-derived cells in ischemic heart failure[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 54-57.

冠状动脉或其分支阻塞而引起心肌缺血可导致急性心肌梗死,梗死区域周围形成瘢痕组织后心脏收缩功能下降,心室发生病理性重塑,最终出现充血性心力衰竭。心肌球源性细胞(CDC)是来自心肌的干细胞,在体外可以分化为心肌细胞和血管内皮细胞。在体内可以触发自身心肌细胞增殖和通过旁分泌募集祖细胞。旁分泌介质不但拥有干细胞的作用,且没有细胞移植相关的并发症。临床实验证明了CDC可以促进心肌梗死后的心脏功能的恢复。长期疗效还有待大规模临床试验的验证。

Acute cardiac infarction is caused by acute cardiac ischemia due to stensis of coronary artery and its branches. Serious cardiac ischemia may cause necrosis of heart cells and scar around the infarction area may cause heart dysfunction and remolding, leading to heart faiure. Stem cells derived from cardiac tissue itself, referred to as cardiosphere-derived cells (CDCs), may give rise to muscular cells and vascular endothelial cells in vitro and trigger native cardiomyocyte proliferation and recruitment of endogenous progenitor cells via paracrine effects. Mediators involved in paracrine signaling can be used as a stem cell-free therapy, with all the benefits and none of the associated complications of stem cells. Large-scale clinical trials are needed to confirm the long-term efficacy of CDC.

[1]
Smith RR,Barile L,Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens[J]. Circulation, 2007, 115(7):896-908.
[2]
Sun Y,Chi D,Tan M, et al. Cadaveric cardiosphere-derived cells can maintain regenerative capacity and improve the heart function of cardiomyopathy[J]. Cell Cycle, 2016, 15(9):1248-1256.
[3]
姜大庆,谷天祥,徐兆发, 等. 心肌球源性心肌干细胞联合心室肌细胞外基质治疗大鼠急性心肌梗死效果[J]. 南方医科大学学报, 2016, 36(10):1316-1321.
[4]
Li TS,Cheng K,Malliaras K, et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells[J]. J Am Coll Cardiol, 2012, 59(10):942-953.
[5]
Simpson DL,Mishra R,Sharma S, et al. A strong regenerative ability of cardiac stem cells derived from neonatal hearts[J]. Circulation, 2012, 126(11 Suppl 1):S46-53.
[6]
Gallet R,Tseliou E,Dawkins J, et al. Intracoronary delivery of Self-Assembling Heart-Derived microtissues (cardiospheres) for prevention of adverse remodeling in a pig model of convalescent myocardial infarction[J]. Circ Cardiovasc Interv, 2015, 8(5):e002391.
[7]
Grigorian-Shamagian L,Liu W,Fereydooni S, et al. Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats[J]. Eur Heart, 2017, 38(39):2957-2967.
[8]
Johnston PV,Sasano T,Mills K, et al. Engraftment,differentiation,and functional benefts of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy[J]. Circulation, 2009, 120(12):1075-1083.
[9]
Tseliou E,Kanazawa H,Dawkins J, et al. Widespread myocardial delivery of Heart-Derived stem cells by nonocclusive Triple-Vessel intracoronary infusion in porcine ischemic cardiomyopathy: superior attenuation of adverse remodeling documented by magnetic resonance imaging and histology[J]. PLoS One, 2016, 11(1):e0144523.
[10]
Makkar RR,Smith RR,Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial[J]. Lancet, 2012, 379(9819):895-904.
[11]
Chakravarty T,Makkar R,Henry T, et al. TCT-820 multivessel intracoronary infusion of allogeneic cardiosphere derived cells in dilated cardiomyopathy:long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially-regenerative cells(DYNAMIC Trial)[J]. J Am Coll Cardiol, 2016, 68(18):332.
[12]
Lee ST,White AJ,Matsushita S, et al. Intramyocardial injection of autologous cardiospheres or Cardiosphere-Derived cells preserves function and minimizes adverse ventricular remodeling in Pigs with heart failure Post-Myocardial infarction[J]. J Am Coll Cardiol, 2011, 57(4):455-465.
[13]
Blázquez R,Sánchez-Margallo FM,Crisóstomo V, et al. Intrapericardial delivery of cardiosphere-derived cells:an immunological study in a clinically relevant large animal model[J]. PLoS One, 2016, 11(2):e0149001.
[14]
Cheng K,Li TS,Malliaras K, et al. Magnetic targeting enhances engraftmen and functional benefit of iron-labeled cardiosphere-derived cells in myocardia infarction[J]. Circ Res, 2010, 106(10):1570-1581.
[15]
Cheng K,Blusztajn A,Shen DL, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel[J]. Biomaterials, 2012, 33(21):5317-5324.
[16]
Hosoyama T,Samura M,Kudo T, et al. ICardiosphere-derived cell sheet primed with hypoxia improves left ventricular function of chronically infarcted heart[J]. Am J Transl Res, 2015, 7(12):2738-2751.
[17]
Takehara N,Tsutsumi Y,Tateishi K, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction[J]. J Am Coll Cardiol, 2008, 52(23):1858-1865.
[18]
Aghila Rani KG,Kartha CC. Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart[J]. Growth Factors, 2010, 28(3):157-165.
[19]
Dutton LC,Church SAV,Hodgkiss-Geere H, et al. Cryopreservation of canine cardiosphere-derived cells:Implications for clinical application[J]. Cytometry A, 2018, 93(1):115-124.
[20]
Malliaras K,Li TS,Luthringer D, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells[J]. Circulation, 2012, 125(1):100-112.
[21]
Weil BR,Suzuki G,Leiker MM, et al. Comparative efficacy of intracoronary allogeneic mesenchymal stem cells and Cardiosphere-Derived cells in swine with hibernating myocardium[J]. Circ Res, 2015, 117(7):634-644.
[22]
Kanazawa H,Tseliou E,Malliaras KA, et al. Cellular postconditioning allogeneic Cardiosphere-Derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in Pigs with acute myocardial infarction[J]. Circ Heart Fail, 2015, 8(2):322-332.
[23]
Ishigami S,Ohtsuki S,Tarui S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome:the TICAP prospective phase 1 controlled trial[J]. Circ Res, 2015, 116(4):653-664.
[24]
Malliaras K,Marbán E. Cardiac regeneration validated[J]. Nat Biotechnol, 2015, 33(6):587.
[25]
Namazi H,Mohit E,Namazi I, et al. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro- angiogenic miRNA [J]. J Cell Biochem, 2018, 119(5):4150-4160.
[26]
Zhang WB,Liu YQ,Zhang X, et al. The role of β-adrenergic receptors and p38MAPK signaling pathways in physiological processes of cardiosphere-derived cells[J]. J Cell Biochem, 2018, 119(1):1204-1214.
[27]
Emani SM,Del Nido PJ. Cell-Based therapy with cardiosphere-derived cardiocytes:a new hope for pediatric patients with single ventricle congenital heart disease?[J]. Circ Res, 2018, 122(7):916-917.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 李颖, 潘绍卿, 丁明岩, 孙丹丹, 曲海波, 侯培培, 朱芳. 实时三维超声心动图对高度房室传导阻滞伴射血分数保留的心力衰竭患者左束支区域起搏后左心室功能及同步性的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 430-436.
[3] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[6] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[7] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[8] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[9] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[13] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 王震, 杨晓月, 苏康康, 王朝阳, 李少杰, 陈淑霞, 谷剑. β受体阻滞剂对心力衰竭合并房颤患者预后影响的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 479-482.
阅读次数
全文


摘要