切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 54 -57. doi: 10.3877/cma.j.issn.2095-1221.2019.01.011

所属专题: 文献

综述

心肌球源性细胞在心力衰竭中的应用
林嘉润1, 廖联明2,()   
  1. 1. 550004 贵阳,贵州医科大学临床医学院2015级
    2. 350001 福州,福建医科大学附属协和医院中心实验室
  • 收稿日期:2018-10-10 出版日期:2019-02-01
  • 通信作者: 廖联明

Application of cardiosphere-derived cells in ischemic heart failure

Jiarun Lin1, Lianming Liao2,()   

  1. 1. Clinical Medical College, Guizhou Medcial University, Guiyang 550000, China; Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, China
  • Received:2018-10-10 Published:2019-02-01
  • Corresponding author: Lianming Liao
  • About author:
    Corresponding author:Liao Lianming, Email:
引用本文:

林嘉润, 廖联明. 心肌球源性细胞在心力衰竭中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 54-57.

Jiarun Lin, Lianming Liao. Application of cardiosphere-derived cells in ischemic heart failure[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 54-57.

冠状动脉或其分支阻塞而引起心肌缺血可导致急性心肌梗死,梗死区域周围形成瘢痕组织后心脏收缩功能下降,心室发生病理性重塑,最终出现充血性心力衰竭。心肌球源性细胞(CDC)是来自心肌的干细胞,在体外可以分化为心肌细胞和血管内皮细胞。在体内可以触发自身心肌细胞增殖和通过旁分泌募集祖细胞。旁分泌介质不但拥有干细胞的作用,且没有细胞移植相关的并发症。临床实验证明了CDC可以促进心肌梗死后的心脏功能的恢复。长期疗效还有待大规模临床试验的验证。

Acute cardiac infarction is caused by acute cardiac ischemia due to stensis of coronary artery and its branches. Serious cardiac ischemia may cause necrosis of heart cells and scar around the infarction area may cause heart dysfunction and remolding, leading to heart faiure. Stem cells derived from cardiac tissue itself, referred to as cardiosphere-derived cells (CDCs), may give rise to muscular cells and vascular endothelial cells in vitro and trigger native cardiomyocyte proliferation and recruitment of endogenous progenitor cells via paracrine effects. Mediators involved in paracrine signaling can be used as a stem cell-free therapy, with all the benefits and none of the associated complications of stem cells. Large-scale clinical trials are needed to confirm the long-term efficacy of CDC.

[1]
Smith RR,Barile L,Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens[J]. Circulation, 2007, 115(7):896-908.
[2]
Sun Y,Chi D,Tan M, et al. Cadaveric cardiosphere-derived cells can maintain regenerative capacity and improve the heart function of cardiomyopathy[J]. Cell Cycle, 2016, 15(9):1248-1256.
[3]
姜大庆,谷天祥,徐兆发, 等. 心肌球源性心肌干细胞联合心室肌细胞外基质治疗大鼠急性心肌梗死效果[J]. 南方医科大学学报, 2016, 36(10):1316-1321.
[4]
Li TS,Cheng K,Malliaras K, et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells[J]. J Am Coll Cardiol, 2012, 59(10):942-953.
[5]
Simpson DL,Mishra R,Sharma S, et al. A strong regenerative ability of cardiac stem cells derived from neonatal hearts[J]. Circulation, 2012, 126(11 Suppl 1):S46-53.
[6]
Gallet R,Tseliou E,Dawkins J, et al. Intracoronary delivery of Self-Assembling Heart-Derived microtissues (cardiospheres) for prevention of adverse remodeling in a pig model of convalescent myocardial infarction[J]. Circ Cardiovasc Interv, 2015, 8(5):e002391.
[7]
Grigorian-Shamagian L,Liu W,Fereydooni S, et al. Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats[J]. Eur Heart, 2017, 38(39):2957-2967.
[8]
Johnston PV,Sasano T,Mills K, et al. Engraftment,differentiation,and functional benefts of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy[J]. Circulation, 2009, 120(12):1075-1083.
[9]
Tseliou E,Kanazawa H,Dawkins J, et al. Widespread myocardial delivery of Heart-Derived stem cells by nonocclusive Triple-Vessel intracoronary infusion in porcine ischemic cardiomyopathy: superior attenuation of adverse remodeling documented by magnetic resonance imaging and histology[J]. PLoS One, 2016, 11(1):e0144523.
[10]
Makkar RR,Smith RR,Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial[J]. Lancet, 2012, 379(9819):895-904.
[11]
Chakravarty T,Makkar R,Henry T, et al. TCT-820 multivessel intracoronary infusion of allogeneic cardiosphere derived cells in dilated cardiomyopathy:long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially-regenerative cells(DYNAMIC Trial)[J]. J Am Coll Cardiol, 2016, 68(18):332.
[12]
Lee ST,White AJ,Matsushita S, et al. Intramyocardial injection of autologous cardiospheres or Cardiosphere-Derived cells preserves function and minimizes adverse ventricular remodeling in Pigs with heart failure Post-Myocardial infarction[J]. J Am Coll Cardiol, 2011, 57(4):455-465.
[13]
Blázquez R,Sánchez-Margallo FM,Crisóstomo V, et al. Intrapericardial delivery of cardiosphere-derived cells:an immunological study in a clinically relevant large animal model[J]. PLoS One, 2016, 11(2):e0149001.
[14]
Cheng K,Li TS,Malliaras K, et al. Magnetic targeting enhances engraftmen and functional benefit of iron-labeled cardiosphere-derived cells in myocardia infarction[J]. Circ Res, 2010, 106(10):1570-1581.
[15]
Cheng K,Blusztajn A,Shen DL, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel[J]. Biomaterials, 2012, 33(21):5317-5324.
[16]
Hosoyama T,Samura M,Kudo T, et al. ICardiosphere-derived cell sheet primed with hypoxia improves left ventricular function of chronically infarcted heart[J]. Am J Transl Res, 2015, 7(12):2738-2751.
[17]
Takehara N,Tsutsumi Y,Tateishi K, et al. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction[J]. J Am Coll Cardiol, 2008, 52(23):1858-1865.
[18]
Aghila Rani KG,Kartha CC. Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart[J]. Growth Factors, 2010, 28(3):157-165.
[19]
Dutton LC,Church SAV,Hodgkiss-Geere H, et al. Cryopreservation of canine cardiosphere-derived cells:Implications for clinical application[J]. Cytometry A, 2018, 93(1):115-124.
[20]
Malliaras K,Li TS,Luthringer D, et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells[J]. Circulation, 2012, 125(1):100-112.
[21]
Weil BR,Suzuki G,Leiker MM, et al. Comparative efficacy of intracoronary allogeneic mesenchymal stem cells and Cardiosphere-Derived cells in swine with hibernating myocardium[J]. Circ Res, 2015, 117(7):634-644.
[22]
Kanazawa H,Tseliou E,Malliaras KA, et al. Cellular postconditioning allogeneic Cardiosphere-Derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in Pigs with acute myocardial infarction[J]. Circ Heart Fail, 2015, 8(2):322-332.
[23]
Ishigami S,Ohtsuki S,Tarui S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome:the TICAP prospective phase 1 controlled trial[J]. Circ Res, 2015, 116(4):653-664.
[24]
Malliaras K,Marbán E. Cardiac regeneration validated[J]. Nat Biotechnol, 2015, 33(6):587.
[25]
Namazi H,Mohit E,Namazi I, et al. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro- angiogenic miRNA [J]. J Cell Biochem, 2018, 119(5):4150-4160.
[26]
Zhang WB,Liu YQ,Zhang X, et al. The role of β-adrenergic receptors and p38MAPK signaling pathways in physiological processes of cardiosphere-derived cells[J]. J Cell Biochem, 2018, 119(1):1204-1214.
[27]
Emani SM,Del Nido PJ. Cell-Based therapy with cardiosphere-derived cardiocytes:a new hope for pediatric patients with single ventricle congenital heart disease?[J]. Circ Res, 2018, 122(7):916-917.
[1] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[10] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[11] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[12] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[13] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[14] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[15] 郑屹, 刘莹, 张煜坤, 李广平, 陈康寅, 刘彤. 既往及新发心房颤动对急性心肌梗死患者远期卒中风险的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 406-417.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?