切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 58 -64. doi: 10.3877/cma.j.issn.2095-1221.2019.01.012

所属专题: 文献

综述

CD73在临床疾病中的研究进展
王琰1, 赵育洁2, 李琼3, 郭志坤3,()   
  1. 1. 450000 郑州市第七人民医院心内科;453000 新乡医学院河南省医用组织再生重点实验室
    2. 450000 郑州市第七人民医院心内科
    3. 453000 新乡医学院河南省医用组织再生重点实验室
  • 收稿日期:2018-12-23 出版日期:2019-02-01
  • 通信作者: 郭志坤
  • 基金资助:
    国家自然科学基金(81570268); 河南省重点攻关项目(15210231011)

Research progress of CD73 in diseases

Yan Wang1, Yujie Zhao2, Qiong Li3, Zhikun Guo3,()   

  1. 1. Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou 450000, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453000, China
    2. Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou 450000, China
    3. Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453000, China
  • Received:2018-12-23 Published:2019-02-01
  • Corresponding author: Zhikun Guo
  • About author:
    Corresponding author: Guo Zhikun, Email:
引用本文:

王琰, 赵育洁, 李琼, 郭志坤. CD73在临床疾病中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 58-64.

Yan Wang, Yujie Zhao, Qiong Li, Zhikun Guo. Research progress of CD73 in diseases[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 58-64.

CD73又称5'-核苷酸酶,普遍存在人体多种细胞,是通过糖基-磷酰肌醇介导连接在胞膜上的糖蛋白。CD73有水解酶活性,可降解5'-磷酸腺苷成腺苷,进而通过腺苷与各种腺苷受体亚型作用发挥血管生成、旁分泌和免疫抑制等作用;此外CD73可发挥非酶作用,介导细胞间结合和信号传递。CD73与肿瘤、心肌损伤、脑损伤、糖尿病、弓形虫入侵、系统性红斑狼疮和器官移植等多种临床疾病相关,影响疾病的发生发展,CD73及其水解产生的腺苷与腺苷受体作用,影响机体的生理和病理过程。本文综述近年来CD73的基础和临床研究,以明晰CD73基础研究和临床应用的联系,加快CD73的临床应用。

CD73, also known as 5'-nucleotidase, is a ubiquitous glycoprotein linked to the cell membrane via GPI. CD73 has hydrolase activity, which can degrade adenosine 5'-phosphate into adenosine, and then exert the effects of angiogenesis, paracrine and immunosuppression through the interaction of adenosine and various adenosine receptor subtypes. In addition, CD73 can play a non-enzymatic role in mediating cell-to-cell binding and signal transduction. CD73 is associated with many diseases, such as tumors, myocardial injury, brain injury, diabetes mellitus, Toxoplasma invasion, systemic lupus erythematosus, organ transplantation and so on. Adenosine and adenosine receptors produced by CD73 and its hydrolysis affect the physiological and pathological processes of the body. This article reviews the basic and clinical research of CD73 in recent years, and the relationship between basic research and clinical application of CD73.

图1 CD73在临床疾病中的应用研究
图2 CD73在肿瘤中的作用机制示意图
图3 CD73在弓形体感染中的作用机制示意图
[1]
Gile J,Eckle T. ADORA2b Signaling in Cardioprotection[J]. J Nat Sci, 2016, 2(10). pii: e222.
[2]
Gao ZW,Wang HP,Fang L, et al. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity[J]. BMC Cancer, 2017, 17(1):135.
[3]
Allard B,Turcotte M,Stagg J. CD73-Generated adenosine: orchestrating the Tumor-Stroma interplay to promote cancer growth[J]. J Biomed Biotechnol, 2012, 16(10):485156.
[4]
Sciarra A,Monteiro I,Ménétrier-Caux C, et al. Correction to:CD73 expression in normal and pathological human hepatobiliopancreatic tissues[J]. Cancer Immunol Immunother, 2019, 68(3):529.
[5]
Sek K,Mølck C,Stewart GD, et al. Targeting adenosine receptor signaling in cancer immunotherapy[J]. Int J Mol Sci, 2018, 19(12). pii: E3837.
[6]
Beavis PA,Stagg J,Darcy PK, et al. CD73:a potent suppressor of antitumor immune responses[J]. Trends Immunol, 2012, 33(5):231-237.
[7]
Whiteside TL,Mandapathil M,Schuler P. The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg)[J]. Curr Med Chem, 2011, 18(34):5217-5223.
[8]
Young A,Ngiow SF,Barkauskas DS, et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses[J]. Cancer Cell, 2016, 30(3):391-403.
[9]
Wang L,Tang S,Wang Y, et al. Ecto-5-nucleotidase (CD73) promotes tumor growth angiogenesis[J]. Clin Exp Metastasis, 2013, 30(5):671-680.
[10]
Allard B,Turcotte M,Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer[J]. Expert Opin Ther Targets, 2014, 18(8):863-881.
[11]
Giordano G,Febbraro A,Tomaselli E, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer[J]. J Exp Clin Cancer Res, 2015, 34(1):108.
[12]
Zhi X,Wang Y,Yu J, et al. Potential prognostic biomarker CD73 regulates epidermal growth factor receptor expression in human breast cancer[J]. IUBMB Life, 2012, 64(11):911-920.
[13]
Xie MH,Qin HB,Luo QX, et al. MicroRNA-30a regulates cell proliferation and tumor growth of colorectal cancer by targeting CD73[J]. BMC Cancer, 2017, 17(1):305.
[14]
Yegutkin GG,Marttila-Ichihara F,Karikoski M, et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression[J]. Eur J Immunol, 2011, 41(5):1231-1241.
[15]
Sadej R,Skladanowski AC. Dual, enzymatic and non-enzymatic, function of ecto-5'-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells[J]. Acta Biochim Pol, 2012, 59(4):647-652.
[16]
Wang H,Lee S,Lo Nigro C, et al. NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity[J]. Br J Cancer, 2012, 106(8):1446-1452.
[17]
Bonner BF,Rg N,Jacoby C, et al. Ecto-5'-Nucleotidase on immune cells protects from adverse cardiac remodeling[J]. Circ Res, 2013, 113(3):301-312.
[18]
Quast C,Alter C,Ding ZP, et al. Adenosine formed by CD73 on T cells inhibits cardiac inflammation and fibrosis and preserves contractile function in transverse aortic Constriction-Induced heart failure[J]. Circ Heart Fail, 2017, 10(4):e003346.
[19]
Del Ry S,Giannessi D,Maltinti MA, et al. Increased plasma levels of osteopontin are associated with activation of the renin-aldosterone system and with myocardial and coronary microvascular damage in dilated cardiomyopathy[J]. Cytokine, 2010, 49(3):325-330.
[20]
Hensel F,Hermann R,Brändlein S, et al. Regulation of the new coexpressed CD55(decay-accelerating factor)receptor on stomach carcinoma cells involved in antibody SC-1-induced apoptosis[J]. Lab Invest, 2001, 81(11):1553-1563.
[21]
Hermes M,Osswald H,Kloor D. Adenosine metabolism and its effect on methylation potential in cultured cells: Methodological considerations[J]. Cell Mol Biol, 2006, 52(S):874-881.
[22]
Lappas CM,Rieger JM,Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells[J]. J Immunol, 2005, 174(2):1073-1080.
[23]
汪咏梅,向伟,圣蒂·莫尔. CD73对弓形虫侵入宿主细胞及其在细胞内繁殖过程的影响(英文)[J]. 临床儿科杂志, 2010, 28(8):701-709.
[24]
Bours MJ,Swennen EL,Di Virgilio F, et al. PCAdenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation[J]. Pharmacol Ther, 2006, 112(2):358-404.
[25]
Mills JH,Thompson LF,Mueller C, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis[J]. 2008, 105(27):9325-9330.
[26]
Alam MS,Kurtz CC,Rowlett RM, et al. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and helicobacter felis-Induced gastritis in mice[J]. J Infect Dis, 2009, 199(4):494-504.
[27]
Karhausen J,Haase VH,Colgan SP. Inflammatory hypoxia: role of hypoxia-inducible factor[J]. Cell Cycle, 2005, 4(2):256-258.
[28]
Frantz S,Vincent KA,Feron O, et al. Innate immunity and angiogenesis [J]. Circ Res, 2005, 96(1):15-26.
[29]
Tsutsui S,Schnermann J,Noorbakhsh F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis[J]. J Neurosci, 2004, 24(6):1521-1529.
[30]
Lee JY,Jhun BS,Oh YT, et al. Activation of adenosine A(3) receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI 3-kinase/Akt and NF-kappa B activation in murine BV2 microglial cells[J]. Neurosci Lett, 2006, 396(1):1-6.
[31]
Mahamed DA,Mills JH,Egan CE, et al. CD73-generated adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central nervous system[J]. Proc Natl Acad Sci U S A, 2012, 109(40):16312-16317.
[32]
Crikis S,Lu B,Murray-Segal LM, et al. Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury[J]. Am J Transplant, 2010, 10(12):2586-2595.
[33]
Ohtsuka T,Changelian PS,Bouis D, et al. Ecto-5'-Nucleotidase (CD73) attenuates allograft airway rejection through adenosine 2A receptor stimulation[J]. J Immunol, 2010, 185(2):1321-1329.
[34]
Tak E,Jung DH,Kim SH, et al. Protective role of hypoxia-inducible factor-1 alpha-dependent CD39 and CD73 in fulminant acute liver failure[J]. Toxicol Appl Pharmacol, 2017, 314(5):72-81.
[35]
Guzman-Flores JM,Cortez-Espinosa N,Cortés-Garcia JD, et al. Expression of CD73 and a2a receptors in cells from subjects with obesity and type 2 diabetes mellitus[J]. Immunobiology, 2015, 220(8): 976-984.
[36]
Eberle D,Schubert S,Postel K, et al. Increased integration of transplanted CD73-Positive photoreceptor precursors into adult mouse retina[J]. Invest Ophthalmol Vis Sci, 2011, 52(9):6462-6471.
[37]
Wang LY,Li JH,Zhou X, et al. Clinical application of carbon nanoparticles in curative resection for colorectal carcinoma[J]. Onco Targets Ther, 2017, 10(22):5585-5589.
[38]
Della Latta V,Cabiati M,Rocchiccioli S, et al. The role of the adenosinergic system in lung fibrosis[J]. Pharmacol Res, 2013, 76(10):182-189.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[6] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[7] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[8] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[9] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[10] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[11] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[12] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[13] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[14] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[15] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
阅读次数
全文


摘要