切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 58 -64. doi: 10.3877/cma.j.issn.2095-1221.2019.01.012

所属专题: 文献

综述

CD73在临床疾病中的研究进展
王琰1, 赵育洁2, 李琼3, 郭志坤3,()   
  1. 1. 450000 郑州市第七人民医院心内科;453000 新乡医学院河南省医用组织再生重点实验室
    2. 450000 郑州市第七人民医院心内科
    3. 453000 新乡医学院河南省医用组织再生重点实验室
  • 收稿日期:2018-12-23 出版日期:2019-02-01
  • 通信作者: 郭志坤
  • 基金资助:
    国家自然科学基金(81570268); 河南省重点攻关项目(15210231011)

Research progress of CD73 in diseases

Yan Wang1, Yujie Zhao2, Qiong Li3, Zhikun Guo3,()   

  1. 1. Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou 450000, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453000, China
    2. Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou 450000, China
    3. Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453000, China
  • Received:2018-12-23 Published:2019-02-01
  • Corresponding author: Zhikun Guo
  • About author:
    Corresponding author: Guo Zhikun, Email:
引用本文:

王琰, 赵育洁, 李琼, 郭志坤. CD73在临床疾病中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 58-64.

Yan Wang, Yujie Zhao, Qiong Li, Zhikun Guo. Research progress of CD73 in diseases[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 58-64.

CD73又称5'-核苷酸酶,普遍存在人体多种细胞,是通过糖基-磷酰肌醇介导连接在胞膜上的糖蛋白。CD73有水解酶活性,可降解5'-磷酸腺苷成腺苷,进而通过腺苷与各种腺苷受体亚型作用发挥血管生成、旁分泌和免疫抑制等作用;此外CD73可发挥非酶作用,介导细胞间结合和信号传递。CD73与肿瘤、心肌损伤、脑损伤、糖尿病、弓形虫入侵、系统性红斑狼疮和器官移植等多种临床疾病相关,影响疾病的发生发展,CD73及其水解产生的腺苷与腺苷受体作用,影响机体的生理和病理过程。本文综述近年来CD73的基础和临床研究,以明晰CD73基础研究和临床应用的联系,加快CD73的临床应用。

CD73, also known as 5'-nucleotidase, is a ubiquitous glycoprotein linked to the cell membrane via GPI. CD73 has hydrolase activity, which can degrade adenosine 5'-phosphate into adenosine, and then exert the effects of angiogenesis, paracrine and immunosuppression through the interaction of adenosine and various adenosine receptor subtypes. In addition, CD73 can play a non-enzymatic role in mediating cell-to-cell binding and signal transduction. CD73 is associated with many diseases, such as tumors, myocardial injury, brain injury, diabetes mellitus, Toxoplasma invasion, systemic lupus erythematosus, organ transplantation and so on. Adenosine and adenosine receptors produced by CD73 and its hydrolysis affect the physiological and pathological processes of the body. This article reviews the basic and clinical research of CD73 in recent years, and the relationship between basic research and clinical application of CD73.

图1 CD73在临床疾病中的应用研究
图2 CD73在肿瘤中的作用机制示意图
图3 CD73在弓形体感染中的作用机制示意图
[1]
Gile J,Eckle T. ADORA2b Signaling in Cardioprotection[J]. J Nat Sci, 2016, 2(10). pii: e222.
[2]
Gao ZW,Wang HP,Fang L, et al. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity[J]. BMC Cancer, 2017, 17(1):135.
[3]
Allard B,Turcotte M,Stagg J. CD73-Generated adenosine: orchestrating the Tumor-Stroma interplay to promote cancer growth[J]. J Biomed Biotechnol, 2012, 16(10):485156.
[4]
Sciarra A,Monteiro I,Ménétrier-Caux C, et al. Correction to:CD73 expression in normal and pathological human hepatobiliopancreatic tissues[J]. Cancer Immunol Immunother, 2019, 68(3):529.
[5]
Sek K,Mølck C,Stewart GD, et al. Targeting adenosine receptor signaling in cancer immunotherapy[J]. Int J Mol Sci, 2018, 19(12). pii: E3837.
[6]
Beavis PA,Stagg J,Darcy PK, et al. CD73:a potent suppressor of antitumor immune responses[J]. Trends Immunol, 2012, 33(5):231-237.
[7]
Whiteside TL,Mandapathil M,Schuler P. The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg)[J]. Curr Med Chem, 2011, 18(34):5217-5223.
[8]
Young A,Ngiow SF,Barkauskas DS, et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses[J]. Cancer Cell, 2016, 30(3):391-403.
[9]
Wang L,Tang S,Wang Y, et al. Ecto-5-nucleotidase (CD73) promotes tumor growth angiogenesis[J]. Clin Exp Metastasis, 2013, 30(5):671-680.
[10]
Allard B,Turcotte M,Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer[J]. Expert Opin Ther Targets, 2014, 18(8):863-881.
[11]
Giordano G,Febbraro A,Tomaselli E, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer[J]. J Exp Clin Cancer Res, 2015, 34(1):108.
[12]
Zhi X,Wang Y,Yu J, et al. Potential prognostic biomarker CD73 regulates epidermal growth factor receptor expression in human breast cancer[J]. IUBMB Life, 2012, 64(11):911-920.
[13]
Xie MH,Qin HB,Luo QX, et al. MicroRNA-30a regulates cell proliferation and tumor growth of colorectal cancer by targeting CD73[J]. BMC Cancer, 2017, 17(1):305.
[14]
Yegutkin GG,Marttila-Ichihara F,Karikoski M, et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression[J]. Eur J Immunol, 2011, 41(5):1231-1241.
[15]
Sadej R,Skladanowski AC. Dual, enzymatic and non-enzymatic, function of ecto-5'-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells[J]. Acta Biochim Pol, 2012, 59(4):647-652.
[16]
Wang H,Lee S,Lo Nigro C, et al. NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity[J]. Br J Cancer, 2012, 106(8):1446-1452.
[17]
Bonner BF,Rg N,Jacoby C, et al. Ecto-5'-Nucleotidase on immune cells protects from adverse cardiac remodeling[J]. Circ Res, 2013, 113(3):301-312.
[18]
Quast C,Alter C,Ding ZP, et al. Adenosine formed by CD73 on T cells inhibits cardiac inflammation and fibrosis and preserves contractile function in transverse aortic Constriction-Induced heart failure[J]. Circ Heart Fail, 2017, 10(4):e003346.
[19]
Del Ry S,Giannessi D,Maltinti MA, et al. Increased plasma levels of osteopontin are associated with activation of the renin-aldosterone system and with myocardial and coronary microvascular damage in dilated cardiomyopathy[J]. Cytokine, 2010, 49(3):325-330.
[20]
Hensel F,Hermann R,Brändlein S, et al. Regulation of the new coexpressed CD55(decay-accelerating factor)receptor on stomach carcinoma cells involved in antibody SC-1-induced apoptosis[J]. Lab Invest, 2001, 81(11):1553-1563.
[21]
Hermes M,Osswald H,Kloor D. Adenosine metabolism and its effect on methylation potential in cultured cells: Methodological considerations[J]. Cell Mol Biol, 2006, 52(S):874-881.
[22]
Lappas CM,Rieger JM,Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells[J]. J Immunol, 2005, 174(2):1073-1080.
[23]
汪咏梅,向伟,圣蒂·莫尔. CD73对弓形虫侵入宿主细胞及其在细胞内繁殖过程的影响(英文)[J]. 临床儿科杂志, 2010, 28(8):701-709.
[24]
Bours MJ,Swennen EL,Di Virgilio F, et al. PCAdenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation[J]. Pharmacol Ther, 2006, 112(2):358-404.
[25]
Mills JH,Thompson LF,Mueller C, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis[J]. 2008, 105(27):9325-9330.
[26]
Alam MS,Kurtz CC,Rowlett RM, et al. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and helicobacter felis-Induced gastritis in mice[J]. J Infect Dis, 2009, 199(4):494-504.
[27]
Karhausen J,Haase VH,Colgan SP. Inflammatory hypoxia: role of hypoxia-inducible factor[J]. Cell Cycle, 2005, 4(2):256-258.
[28]
Frantz S,Vincent KA,Feron O, et al. Innate immunity and angiogenesis [J]. Circ Res, 2005, 96(1):15-26.
[29]
Tsutsui S,Schnermann J,Noorbakhsh F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis[J]. J Neurosci, 2004, 24(6):1521-1529.
[30]
Lee JY,Jhun BS,Oh YT, et al. Activation of adenosine A(3) receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI 3-kinase/Akt and NF-kappa B activation in murine BV2 microglial cells[J]. Neurosci Lett, 2006, 396(1):1-6.
[31]
Mahamed DA,Mills JH,Egan CE, et al. CD73-generated adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central nervous system[J]. Proc Natl Acad Sci U S A, 2012, 109(40):16312-16317.
[32]
Crikis S,Lu B,Murray-Segal LM, et al. Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury[J]. Am J Transplant, 2010, 10(12):2586-2595.
[33]
Ohtsuka T,Changelian PS,Bouis D, et al. Ecto-5'-Nucleotidase (CD73) attenuates allograft airway rejection through adenosine 2A receptor stimulation[J]. J Immunol, 2010, 185(2):1321-1329.
[34]
Tak E,Jung DH,Kim SH, et al. Protective role of hypoxia-inducible factor-1 alpha-dependent CD39 and CD73 in fulminant acute liver failure[J]. Toxicol Appl Pharmacol, 2017, 314(5):72-81.
[35]
Guzman-Flores JM,Cortez-Espinosa N,Cortés-Garcia JD, et al. Expression of CD73 and a2a receptors in cells from subjects with obesity and type 2 diabetes mellitus[J]. Immunobiology, 2015, 220(8): 976-984.
[36]
Eberle D,Schubert S,Postel K, et al. Increased integration of transplanted CD73-Positive photoreceptor precursors into adult mouse retina[J]. Invest Ophthalmol Vis Sci, 2011, 52(9):6462-6471.
[37]
Wang LY,Li JH,Zhou X, et al. Clinical application of carbon nanoparticles in curative resection for colorectal carcinoma[J]. Onco Targets Ther, 2017, 10(22):5585-5589.
[38]
Della Latta V,Cabiati M,Rocchiccioli S, et al. The role of the adenosinergic system in lung fibrosis[J]. Pharmacol Res, 2013, 76(10):182-189.
[1] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[2] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[3] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[4] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[5] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[6] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[7] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[8] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[9] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[10] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[11] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[14] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[15] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?