切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 44 -49. doi: 10.3877/cma.j.issn.2095-1221.2019.01.009

所属专题: 文献

综述

人脐带血来源造血干细胞体外扩增的研究进展
董忱1, 赵龙2, 张斌2,(), 陈虎3,()   
  1. 1. 100071 北京,军事科学院军事医学研究院
    2. 100071 北京,解放军总医院第五医学中心(原解放军第307医院)造血干细胞移植科
    3. 100071 北京,全军造血干细胞研究所 造血干细胞治疗及转化研究北京市重点实验室
  • 收稿日期:2018-04-11 出版日期:2019-02-01
  • 通信作者: 张斌, 陈虎
  • 基金资助:
    北京市科学技术委员会干细胞与再生医学研究项目(Z181100001818004)

Advance of ex vivo expanded human hematopoietic stem cells derived from umbilical cord blood

Chen Dong1, Long Zhao2, Bin Zhang2,(), Hu Chen3,()   

  1. 1. Academy of Military Medical Sciences, Academy of Military Science, Beijing 100071, China
    2. Department of Hematopoietic Stem Cell Transplantation, the Fifth Medical Centre of the People's Liberation Army General Hospital(Former 307th Hospital of the PLA), Beijing 100071, China
    3. the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing 100071, China
  • Received:2018-04-11 Published:2019-02-01
  • Corresponding author: Bin Zhang, Hu Chen
  • About author:
    Corresponding author: Chen Hu, Email:;
    Zhang Bin, Email:
引用本文:

董忱, 赵龙, 张斌, 陈虎. 人脐带血来源造血干细胞体外扩增的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 44-49.

Chen Dong, Long Zhao, Bin Zhang, Hu Chen. Advance of ex vivo expanded human hematopoietic stem cells derived from umbilical cord blood[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 44-49.

造血干细胞(HSCs)是血液系统中的一类成体干细胞群,具有自我更新和多谱系分化两个基本特征。造血干细胞移植(HSCT)可以治疗退行性疾病和多种血液系统疾病。脐带血来源造血干细胞(CB HSCs)是降低HLA配型要求的突破点,但单份脐带血中HSCs数量不能满足使用要求,为了获得足够数量的CB HSCs,体外扩增是一种可行的方法。近几年,学者们探索了多种体外扩增方法,包括优化细胞生长因子混合物、与基质细胞共培养及加入小分子化合物(SMCs)激动剂等。目前应用细胞因子联合小分子的扩增方法在多个临床试验中获得成功。本文对目前体外扩增CB HSCs的研究进展做一综述。

Hematopoietic stem cells (HSCs) are a group of adult stem cells in the blood system, which have two basic characteristics of self-renewal and multi-lineage differentiation. Hematopoietic stem cell transplantation (HSCT) can treat degenerative diseases and various blood system diseases. Umbilical cord blood (CB) HSCs do no require full HLA matching in HSCT, but the number of HSCs in a single cord blood unit cannot meet the requirements for adult recipients. In order to obtain a sufficient number of CB HSCs, ex vivo expansion is a feasible method. In recent years, reserachers have explored a variety of ex vivo expansion methods, including optimization of cytokine cocktails, co-culture with stromal cells, and addition of small molecule compounds (SMCs). At present, cytokines combined with SMCs have been successful in many clinical trials. This article reviews the advance of ex vivo expansion of HSCs derived from cord blood.

表1 用于脐带血造血干细胞离体扩增的"明星"小分子化合物
表2 小分子化合物离体扩增脐带血造血干细胞的临床试验
移植物名称 ClinicalTrials.gov标识符 临床实验进展 扩增效果 总移植细胞数(/kg) 植入效果(植入例/移植例) 中性粒细胞植入时间(d) 血小板植入时间(d) 其他结果 参考文献
MGTA-456 NCT01474681 Ⅰ(Ⅱ)期完成 854倍TNCs
330倍CD34+细胞
TNCs 7×107 CD34+细胞1.82×107 17/17 15(6 ~ 30) 49(28 ~ 136) 随访时间为12个月; [18]
? ? ? ? ? ? ? ? Ⅲ-Ⅳ级急性GVHD发生率29﹪; ?
? ? ? ? ? ? ? ? 移植相关死亡发生率(除复发外)45﹪; ?
? ? ? ? ? ? ? ? 生存率(包括复发)55﹪ ?
ECT-001 NCT02668315 Ⅰ(Ⅱ)期完成 35倍CD34+细胞 TNCs ≥ 1.25×107 CD34+细胞0.25 ~ 4.9×105 18/18 - - 平均随访时间为10个月; [19]
? ? ? ? ? ? ? ? Ⅲ-Ⅳ级急性GVHD发生率6﹪,无中度或重度慢性GVHD; ?
? ? ? ? ? ? ? ? 无进展生存率85﹪; ?
? ? ? ? ? ? ? ? 无GVHD无复发生存率75﹪ ?
StemEx - Ⅰ(Ⅱ)期完成 219倍TNCs
6倍CD34+细胞
TNCs 1.7×107 9/10 30(16 ~ 46) 48(35 ~ 105) 无Ⅲ~Ⅳ级急性GVHD发生,Ⅱ级急性GVHD发生率44﹪; [20]
? ? ? ? ? ? ? ? 100 d存活率90﹪,180?d存活率70﹪ ?
StemEx NCT00469729 Ⅱ(Ⅲ)期完成 400倍TNCs
77倍CD34+细胞
TNCs ≥3.06×107 CD34+细胞9.7×105 97/101(18.4 ~ 23.5) 21 54(43.3 ~ 61.9) Ⅲ~Ⅳ级急性GVHD发生率19.4﹪; [21]
? ? ? ? ? ? ? ? 100?d存活率为84.2﹪,对照组为74.6﹪ ?
NiCord NCT01221857 Ⅰ期完成 486倍TNCs
72倍CD34+细胞
TNCs 3.1×10 CD34+细胞3.5×1067 8/11 11(7 ~ 18) 30(26 ~ 41) 中位随访时间为21个月; [22]
? ? ? ? ? ? ? ? 无Ⅲ/Ⅳ级急性GVHD发生,Ⅱ级急性GVHD发生率45﹪,慢性GVHD发生率18﹪; ?
? ? ? ? ? ? ? ? 1年总生存率82﹪; ?
? ? ? ? ? ? ? ? 1年无进展生存率73﹪ ?
[1]
Wang L,Gu ZY,Liu SF, et al. Single-versus Double-Unit umbilical cord blood transplantation for hematologic diseases: a systematic review[J]. Transfus Med Rev, 2019, 33(1):51-60.
[2]
Pineault N,Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation[J]. Exp Hematol, 2015, 43(7):498-513.
[3]
Pineault N,Cortin V,Boyer L, et al. Individual and synergistic cytokine effects controlling the expansion of cord blood CD34+ cells and megakaryocyte progenitors in culture[J]. Cytotherapy, 2011, 13(4): 467-480.
[4]
Codispoti B,Rinaldo N,Chiarella E, et al. Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells[J]. Oncotarget, 2017, 8(27):43782-43798.
[5]
Jiang MM,Chen HD,Lai SJ, et al. Maintenance of human haematopoietic stem and progenitor cells in vitro using a chemical cocktail[J]. Cell Discov, 2018, 4:59.
[6]
Boitano AE,Wang J,Romeo R, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells[J]. Science, 2010, 329(5997):1345-1348.
[7]
Fares I,Chagraoui J,Gareau Y, et al. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal[J]. Science, 2014, 345(623):1509-1512.
[8]
徐诗琪,丁亚辉,张宇, 等. UM171体外扩增脐血造血干细胞的机制[J]. 中国组织工程研究, 2018, 22(21):3328-3334.
[9]
Huang X,Lee MR,Cooper S, et al. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression[J]. Leukemia, 2016, 30(1):144-153.
[10]
Sertorio M,Du W,Amarachintha S, et al. In vivo RNAi screen unveils PPAR gamma as a regulator of hematopoietic stem cell homeostasis[J]. Stem Cell Reports, 2017, 8(5):1242-1255.
[11]
Guo B,Huang XX,Lee MR, et al. Antagonism of PPAR-gamma signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis[J]. Nat Med, 2018, 24(3):360.
[12]
Zou J,Zou P,Wang J, et al. Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells[J]. Ann Hematol, 2012, 91(6):813-823.
[13]
Bari S,Zhong QX,Fan XB, et al. Ex vivo expansion of CD34(+)CD90(+)CD49f(+) hematopoietic stem and progenitor cells from Non- Enriched umbilical cord blood with azole compounds[J]. Stem Cells Transl Med, 2018, 7(5):376-393.
[14]
Xiao X,Lai W,Xie H, et al. Targeting JNK pathway promotes human hematopoietic stem cell expansion[J]. Cell Discov, 2019, 5:2-2.
[15]
Peled T,Mandel J,Goudsmid RN, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine Copper chelator tetraethylenepentamine[J]. Cytotherapy, 2004, 6(4):344-355.
[16]
Peled T,Shoham H,Aschengrau D, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment[J]. Exp Hematol, 2012, 40(4):342-355.
[17]
Phase II Trials of MGTA-456 - Results of Ex Vivo Expanded Hematopoietic Stem Cells from a Single Cord Blood Unit[EB/OL]. [2018-06-14].

URL    
[18]
Wagner JE Jr,Brunstein CG,Boitano AE, et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a Stand-Alone graft[J]. Cell Stem Cell, 2016, 18(1):144-155.
[19]
The UM171 Cord Blood Expansion Trial: Working Towards the Ideal Graft[EB/OL]. [2018-06-14].

URL    
[20]
de Lima M,McMannis J,Gee A, et al. Transplantation of ex vivo expanded cord blood cells using the Copper chelator tetraethylenepentamine: a phase I/II clinical trial[J]. Bone Marrow Transplant, 2008, 41(9):771-778.
[21]
Stiff PJ,Montesinos P,Peled T, et al. Cohort-Controlled comparison of umbilical cord blood transplantation using Carlecortemcel-L, a single Progenitor-Enriched cord blood, to double cord blood unit transplantation[J]. Biol Blood Marrow Transplant, 2018, 24(7):1463-1470.
[22]
Horwitz ME,Chao NJ,Rizzieri DA, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment[J]. J Clin Invest, 2014, 124(7):3121-3128.
[23]
Nicord Single Unit Expanded Cord Blood Transplantation - Final Results[EB/OL]. [2018-06-14].

URL    
[24]
Li ZR,Qian PX,Shao WQ, et al. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion[J]. Cell Res, 2018, 28(9):904-917.
[25]
Huang XX,Broxmeyer HE. m(6)A reader suppression bolsters HSC expansion[J]. Cell Res, 2018, 28(9):875-876.
[26]
Dexter TM,Moore MA,Sheridan AP. Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semiallogeneic bone marrow chimeras in vitro[J]. J Exp Med, 1977, 145(6): 1612-1616.
[27]
Liu M,Yang SG,Shi L, et al. Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues[J]. Platelets, 2010, 21(3):199-210.
[28]
Costa MHG,de Soure AM,Cabral JMS, et al. Hematopoietic niche-exploring biomimetic cues to improve the functionality of hematopoietic stem/progenitor cells[J]. Biotechnol J, 2018, 13(2):.
[29]
Yong KS,Keng CT,Tan SQ, et al. Human CD34(lo)CD133(lo) fetal liver cells support the expansion of human CD34(hi)CD133(hi) hematopoietic stem cells[J]. Cell Mol Immunol, 2016, 13(5):605-614.
[30]
Takubo K,Goda N,Yamada W, et al. Regulation of the HIF-1 alpha Level Is Essential for Hematopoietic Stem Cells[J]. Cell Stem Cell, 2010, 7(3):391-402.
[31]
Mohammadali F,Abroun S,Atashi A. Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells[J]. Iran J Basic Med Sci, 2018, 21(7):709-716.
[32]
Ludin A,Gur-Cohen S,Golan K, et al. Reactive Oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment[J]. Antioxid Redox Signal, 2014, 21(11):1605-1619.
[1] 李文金, 薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 348-353.
[2] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[3] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[4] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[5] 李芳, 李全, 曹胜军, 王凌峰. 生长因子和细胞因子在创面修复过程中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 174-179.
[6] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[7] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[8] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[9] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[10] 崔燕妮, 任颜, 梁凤婷, 覃艳红, 王宏伟. 脐带血源性产品Omidubicel的临床研发进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 178-182.
[11] 李芸芸, 吴涛, 毛东锋, 鱼玲玲, 刘文慧. 轻型β-地中海贫血供者异基因造血干细胞移植治疗重型再生障碍性贫血1例[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 84-86.
[12] 宋艳, 魏碧霞, 陶勇, 阿依古孜·克里木, 丁琳. 眼内液检测在明确葡萄膜炎病因中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 82-87.
[13] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
阅读次数
全文


摘要