切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 167 -171. doi: 10.3877/cma.j.issn.2095-1221.2023.03.006

综述

心脏巨噬细胞的生理功能及在心肌梗死后的作用
沃吟晴, 杨向群()   
  1. 200433 上海,海军军医大学人体解剖学教研室
  • 收稿日期:2023-01-10 出版日期:2023-06-01
  • 通信作者: 杨向群
  • 基金资助:
    国家自然科学基金(32071365)

The physiological function of cardiac macrophages and their role after myocardial infarction

Yinqing Wo, Xiangqun Yang()   

  1. Department of Human Anatomy, Naval Medical University, Shang hai 200433, China
  • Received:2023-01-10 Published:2023-06-01
  • Corresponding author: Xiangqun Yang
引用本文:

沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.

Yinqing Wo, Xiangqun Yang. The physiological function of cardiac macrophages and their role after myocardial infarction[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(03): 167-171.

巨噬细胞在心脏生理条件下的稳态维持以及损伤后的组织修复中起着至关重要的作用。在心脏处于稳态时,心肌组织常驻巨噬细胞可以促进冠状动脉发育、促进房室结内的电传导、清除衰老和濒死的细胞以及免疫监视。心肌梗死后,募集来的巨噬细胞会产生促炎及抗炎介质,如细胞因子、趋化因子、基质金属蛋白酶和生长因子等,吞噬坏死细胞及基质碎片,促进血管生成和疤痕形成。本篇综述侧重于心肌组织常驻巨噬细胞的起源、异质性,以及趋化因子2受体(CCR2)+和CCR2-这2个心脏巨噬细胞亚群在稳态条件下和心肌梗死后所发挥的不同作用。

Macrophages are crucial in maintaining homeostasis under cardiac physiological conditions and tissue repair after injury. While the heart is in homeostasis, myocardial tissue resident macrophages promote coronary artery development and electrical conduction within the atrioventricular node, remove aging and dying cells, and conduct immune surveillance. Macrophages recruited after myocardial infarction produce pro-inflammatory and anti-inflammatory mediators such as cytokines, chemokines, matrix metalloproteinases and growth factors that devour dead cells and stromal debris and promote angiogenesis and scarring. This review focuses on the origin and heterogeneity of resident macrophages in myocardial tissue and the different roles of CCR2+ and CCR2 cardiac macrophage subsets under steady-state conditions and after myocardial infarction.

1
Chen R, Zhang S, Liu F, et al. Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1[J]. Acta Pharm Sin B, 2023, 13(1):128-141.
2
Bajpai G, Bredemeyer A, Li W, et al. Tissue resident CCR2-and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury[J]. Circ Res, 2019, 124(2):263-278.
3
Weinberger T, Esfandyari D, Messerer D, et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation[J]. Nat Commun, 2020, 11(1):4549. doi: 10.1038/s41467-020-18287-x.
4
Leid J, Carrelha J, Boukarabila H, et al. Primitive embryonic macrophages are required for coronary development and maturation[J]. Circ Res, 2016, 118(10):1498-1511.
5
Dick SA, Macklin JA, Nejat S, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction[J]. Nat Immunol, 2019, 20(1):29-39.
6
Bai PY, Chen SQ, Jia DL, et al. Environmental eustress improves postinfarction cardiac repair via enhancing cardiac macrophage survival[J]. Sci Adv, 2022, 8(17):eabm3436. doi: 10.1126/sciadv.abm3436.
7
Lavine KJ, Epelman S, Uchida K, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart[J]. Proc Natl Acad Sci U S A, 2014, 111(45):16029-16034.
8
Molawi K, Wolf Y, Kandalla PK, et al. Progressive replacement of embryo-derived cardiac macrophages with age[J]. J Exp Med, 2014, 211(11):2151-2158.
9
Aurora AB, Porrello ER, Tan W, et al. Macrophages are required for neonatal heart regeneration[J]. J Clin Invest, 2014, 124(3):1382-1392.
10
Chen B, Brickshawana A, Frangogiannis NG. The functional heterogeneity of resident cardiac macrophages in myocardial injury(CCR2(+) cells promote inflammation, whereas CCR2(-) cells protect)[J]. Circ Res, 2019, 124(2):183-185.
11
Dick SA, Wong A, Hamidzada H, et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles[J]. Sci Immunol, 2022, 7(67):eabf7777. doi: 10.1126/sciimmunol.abf7777.
12
Heo GS, Bajpai G, Li W, et al. Targeted PET imaging of chemokine receptor 2-positive monocytes and macrophages in the injured heart[J]. J Nucl Med, 2021, 62(1):111-114.
13
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages[J]. Immunity, 2014, 41(1):21-35.
14
Li W, Hsiao HM, Higashikubo R, et al. Heart-resident CCR2(+) macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling[J]. JCI Insight, 2016, 1(12):e87315. doi: 10.1172/jci.insight.87315.
15
DeBerge M, Yeap XY, Dehn S, et al. MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury[J]. Circ Res, 2017, 121(8):930-940.
16
Al-Qazazi R, Lima PDA, Prisco SZ, et al. Macrophage-NLRP3 Activation Promotes Right Ventricle Failure in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 206(5):608-624.
17
Hulsmans M, Clauss S, Xiao L, et al. Macrophages facilitate electrical conduction in the heart[J]. Cell, 2017, 169(3):510-22.e20.
18
Hess A, Borchert T, Ross TL, et al. Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging[J]. Basic Res Cardiol, 2022, 117(1):14. doi: 10.1007/s00395-022-00922-x.
19
Jia D, Chen S, Bai P, et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction[J]. Circulation, 2022, 145(20):1542-1556.
20
Heidt T, Courties G, Dutta P, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction[J]. Circ Res, 2014, 115(2):284-295.
21
Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction[J]. Transl Res, 2018, 191:15-28.
22
Jung K, Kim P, Leuschner F, et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts[J]. Circ Res, 2013, 112(6):891-899.
23
Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation[J]. Immunity, 2014, 40(1):91-104.
24
Rocha-Resende C, Pani F, Adamo L. B cells modulate the expression of MHC-II on cardiac CCR2(-) macrophages[J]. J Mol Cell Cardiol, 2021, 157:98-103.
25
Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease[J]. Cardiovasc Res, 2014, 102(2):240-248.
26
Jiao J, He S, Wang Y, et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration[J]. Basic Res Cardiol, 2021, 116(1):46.doi: 10.1007/s00395-021-00886-4.
27
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair[J]. Cells, 2020, 10(1):51. doi: 10.3390/cells10010051.
28
Weinberger T, Räuber S, Schneider V, et al. Differential MHC-Ⅱ expression and phagocytic functions of embryo-derived cardiac macrophages in the course of myocardial infarction in mice[J]. Eur J Immunol, 2021, 51(1):250-252.
29
Rizzo G, Gropper J, Piollet M, et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction[J]. Cardiovasc Res, 2023119(3):772-785.
30
Frangogiannis NG. Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration[J]. J Clin Invest, 2015, 125(8):2927-30.
31
Revelo XS, Parthiban P, Chen C, et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis[J]. Circ Res, 2021, 129(12):1086-1101.
32
Grune J, Lewis AJM, Yamazoe M, et al. Neutrophils incite and macrophages avert electrical storm after myocardial infarction[J]. Nat Cardiovasc Res, 2022, 1(7):649-664.
33
Zaman R, Hamidzada H, Epelman S. Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium[J]. Curr Opin Immunol, 2021, 68:54-63.
34
Nemska S, Gassmann M, Bang ML, et al. Antagonizing the CX3CR1 receptor markedly reduces development of cardiac hypertrophy after transverse aortic constriction in mice[J]. J Cardiovasc Pharmacol, 2021, 78(6):792-801.
35
Feng G, Bajpai G, Ma P, et al. CCL17 aggravates myocardial injury by suppressing recruitment of regulatory T cells[J]. Circulation, 2022, 145(10):765-782.
36
Alonso-Herranz L, Sahún-Español á, Paredes A, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction[J]. Elife, 2020, 9:e57920. doi: 10.7554/eLife.57920.
37
Wong NR, Mohan J, Kopecky BJ, et al. Resident cardiac macrophages mediate adaptive myocardial remodeling[J]. Immunity, 2021, 54(9):2072-2088.e7.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 张忆雪, 陈漠水, 张福伟, 郑颖, 孙定军, 叶青妃. 贝那普利通过下调心锚重复蛋白改善心肌梗死后心肌重塑[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 292-299.
[3] 娄丽丽, 刘瀚旻. 儿童狼疮性肾炎相关肾小管间质损伤的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 373-378.
[4] 邬龙海, 黄淼, 龚云辉, 喻云倩. 血清趋化因子在妊娠期糖尿病孕妇中的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 357-362.
[5] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[6] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[7] 闫凯悦, 邓慧玲, 张玉凤, 席淼, 李雨欣. 单核细胞趋化蛋白-1在感染性疾病中研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 217-221.
[8] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[9] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[10] 王丽媛, 张瑞芳, 王向托, 王雅霄. 老年高尿酸血症患者血清白细胞介素-23、尿酸、单核细胞趋化蛋白-1与肾功能损伤的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 145-149.
[11] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[12] 郝怿隆, 叶慧, 白金霞, 宋威, 秦龙, 张黔, 万健. 钝性胸部外伤引起冠状动脉斑块脱落导致心肌梗死一例[J]. 中华重症医学电子杂志, 2023, 09(03): 311-315.
[13] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[14] 杨沭, 郦明芳, 陈明龙. 左心室血栓的研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(03): 188-192.
[15] 刘玉苓, 王婷婷, 吴高峰, 俞淑静. 健康体检人群内脏脂肪面积与新型炎症标志物的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 197-202.
阅读次数
全文


摘要