切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 167 -171. doi: 10.3877/cma.j.issn.2095-1221.2023.03.006

综述

心脏巨噬细胞的生理功能及在心肌梗死后的作用
沃吟晴, 杨向群()   
  1. 200433 上海,海军军医大学人体解剖学教研室
  • 收稿日期:2023-01-10 出版日期:2023-06-01
  • 通信作者: 杨向群
  • 基金资助:
    国家自然科学基金(32071365)

The physiological function of cardiac macrophages and their role after myocardial infarction

Yinqing Wo, Xiangqun Yang()   

  1. Department of Human Anatomy, Naval Medical University, Shang hai 200433, China
  • Received:2023-01-10 Published:2023-06-01
  • Corresponding author: Xiangqun Yang
引用本文:

沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.

Yinqing Wo, Xiangqun Yang. The physiological function of cardiac macrophages and their role after myocardial infarction[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(03): 167-171.

巨噬细胞在心脏生理条件下的稳态维持以及损伤后的组织修复中起着至关重要的作用。在心脏处于稳态时,心肌组织常驻巨噬细胞可以促进冠状动脉发育、促进房室结内的电传导、清除衰老和濒死的细胞以及免疫监视。心肌梗死后,募集来的巨噬细胞会产生促炎及抗炎介质,如细胞因子、趋化因子、基质金属蛋白酶和生长因子等,吞噬坏死细胞及基质碎片,促进血管生成和疤痕形成。本篇综述侧重于心肌组织常驻巨噬细胞的起源、异质性,以及趋化因子2受体(CCR2)+和CCR2-这2个心脏巨噬细胞亚群在稳态条件下和心肌梗死后所发挥的不同作用。

Macrophages are crucial in maintaining homeostasis under cardiac physiological conditions and tissue repair after injury. While the heart is in homeostasis, myocardial tissue resident macrophages promote coronary artery development and electrical conduction within the atrioventricular node, remove aging and dying cells, and conduct immune surveillance. Macrophages recruited after myocardial infarction produce pro-inflammatory and anti-inflammatory mediators such as cytokines, chemokines, matrix metalloproteinases and growth factors that devour dead cells and stromal debris and promote angiogenesis and scarring. This review focuses on the origin and heterogeneity of resident macrophages in myocardial tissue and the different roles of CCR2+ and CCR2 cardiac macrophage subsets under steady-state conditions and after myocardial infarction.

1
Chen R, Zhang S, Liu F, et al. Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1[J]. Acta Pharm Sin B, 2023, 13(1):128-141.
2
Bajpai G, Bredemeyer A, Li W, et al. Tissue resident CCR2-and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury[J]. Circ Res, 2019, 124(2):263-278.
3
Weinberger T, Esfandyari D, Messerer D, et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation[J]. Nat Commun, 2020, 11(1):4549. doi: 10.1038/s41467-020-18287-x.
4
Leid J, Carrelha J, Boukarabila H, et al. Primitive embryonic macrophages are required for coronary development and maturation[J]. Circ Res, 2016, 118(10):1498-1511.
5
Dick SA, Macklin JA, Nejat S, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction[J]. Nat Immunol, 2019, 20(1):29-39.
6
Bai PY, Chen SQ, Jia DL, et al. Environmental eustress improves postinfarction cardiac repair via enhancing cardiac macrophage survival[J]. Sci Adv, 2022, 8(17):eabm3436. doi: 10.1126/sciadv.abm3436.
7
Lavine KJ, Epelman S, Uchida K, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart[J]. Proc Natl Acad Sci U S A, 2014, 111(45):16029-16034.
8
Molawi K, Wolf Y, Kandalla PK, et al. Progressive replacement of embryo-derived cardiac macrophages with age[J]. J Exp Med, 2014, 211(11):2151-2158.
9
Aurora AB, Porrello ER, Tan W, et al. Macrophages are required for neonatal heart regeneration[J]. J Clin Invest, 2014, 124(3):1382-1392.
10
Chen B, Brickshawana A, Frangogiannis NG. The functional heterogeneity of resident cardiac macrophages in myocardial injury(CCR2(+) cells promote inflammation, whereas CCR2(-) cells protect)[J]. Circ Res, 2019, 124(2):183-185.
11
Dick SA, Wong A, Hamidzada H, et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles[J]. Sci Immunol, 2022, 7(67):eabf7777. doi: 10.1126/sciimmunol.abf7777.
12
Heo GS, Bajpai G, Li W, et al. Targeted PET imaging of chemokine receptor 2-positive monocytes and macrophages in the injured heart[J]. J Nucl Med, 2021, 62(1):111-114.
13
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages[J]. Immunity, 2014, 41(1):21-35.
14
Li W, Hsiao HM, Higashikubo R, et al. Heart-resident CCR2(+) macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling[J]. JCI Insight, 2016, 1(12):e87315. doi: 10.1172/jci.insight.87315.
15
DeBerge M, Yeap XY, Dehn S, et al. MerTK cleavage on resident cardiac macrophages compromises repair after myocardial ischemia reperfusion injury[J]. Circ Res, 2017, 121(8):930-940.
16
Al-Qazazi R, Lima PDA, Prisco SZ, et al. Macrophage-NLRP3 Activation Promotes Right Ventricle Failure in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 206(5):608-624.
17
Hulsmans M, Clauss S, Xiao L, et al. Macrophages facilitate electrical conduction in the heart[J]. Cell, 2017, 169(3):510-22.e20.
18
Hess A, Borchert T, Ross TL, et al. Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging[J]. Basic Res Cardiol, 2022, 117(1):14. doi: 10.1007/s00395-022-00922-x.
19
Jia D, Chen S, Bai P, et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction[J]. Circulation, 2022, 145(20):1542-1556.
20
Heidt T, Courties G, Dutta P, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction[J]. Circ Res, 2014, 115(2):284-295.
21
Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction[J]. Transl Res, 2018, 191:15-28.
22
Jung K, Kim P, Leuschner F, et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts[J]. Circ Res, 2013, 112(6):891-899.
23
Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation[J]. Immunity, 2014, 40(1):91-104.
24
Rocha-Resende C, Pani F, Adamo L. B cells modulate the expression of MHC-II on cardiac CCR2(-) macrophages[J]. J Mol Cell Cardiol, 2021, 157:98-103.
25
Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease[J]. Cardiovasc Res, 2014, 102(2):240-248.
26
Jiao J, He S, Wang Y, et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration[J]. Basic Res Cardiol, 2021, 116(1):46.doi: 10.1007/s00395-021-00886-4.
27
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair[J]. Cells, 2020, 10(1):51. doi: 10.3390/cells10010051.
28
Weinberger T, Räuber S, Schneider V, et al. Differential MHC-Ⅱ expression and phagocytic functions of embryo-derived cardiac macrophages in the course of myocardial infarction in mice[J]. Eur J Immunol, 2021, 51(1):250-252.
29
Rizzo G, Gropper J, Piollet M, et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction[J]. Cardiovasc Res, 2023119(3):772-785.
30
Frangogiannis NG. Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration[J]. J Clin Invest, 2015, 125(8):2927-30.
31
Revelo XS, Parthiban P, Chen C, et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis[J]. Circ Res, 2021, 129(12):1086-1101.
32
Grune J, Lewis AJM, Yamazoe M, et al. Neutrophils incite and macrophages avert electrical storm after myocardial infarction[J]. Nat Cardiovasc Res, 2022, 1(7):649-664.
33
Zaman R, Hamidzada H, Epelman S. Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium[J]. Curr Opin Immunol, 2021, 68:54-63.
34
Nemska S, Gassmann M, Bang ML, et al. Antagonizing the CX3CR1 receptor markedly reduces development of cardiac hypertrophy after transverse aortic constriction in mice[J]. J Cardiovasc Pharmacol, 2021, 78(6):792-801.
35
Feng G, Bajpai G, Ma P, et al. CCL17 aggravates myocardial injury by suppressing recruitment of regulatory T cells[J]. Circulation, 2022, 145(10):765-782.
36
Alonso-Herranz L, Sahún-Español á, Paredes A, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction[J]. Elife, 2020, 9:e57920. doi: 10.7554/eLife.57920.
37
Wong NR, Mohan J, Kopecky BJ, et al. Resident cardiac macrophages mediate adaptive myocardial remodeling[J]. Immunity, 2021, 54(9):2072-2088.e7.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 王友芳, 李兴超, 刘清敏, 刘德彬, 刘松伍, 郭冬冬, 车峰远. 应激性高血糖指数对经皮冠状动脉介入术后急性心肌梗死患者发生主要不良心脑血管事件的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 124-129.
[4] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[5] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[6] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[7] 董学峰, 常乐, 蔡振煜. 血清ESR、CRP及PLR、MLR联合诊断结缔组织相关性间质性肺炎的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 430-433.
[8] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[9] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[10] 林永俭, 谢雪花, 郝莉茹, 刘丽, 马英东. 优化急诊绿色通道对急性心肌梗死介入治疗患者救治时间的影响[J/OL]. 中华介入放射学电子杂志, 2024, 12(02): 185-189.
[11] 刘聪辉, 何浩然, 黄一诺, 张凤, 王凡月, 郝翰. 膳食铜补充对大鼠心肌梗死后心肌基质金属蛋白酶2表达水平及血流动力学的影响[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 166-172.
[12] 郭方明, 赵明俐, 颜凡辉, 刘萌萌, 王阳, 赵英杰, 刘远航, 张艳芬, 詹景冬. 光学相干断层成像在急性心肌梗死冠状动脉分层斑块病变中的应用[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 73-79.
[13] 徐来英, 程效, 戴亨纷, 侯俊凉, 苏怡林, 张彦. 药物联合个体化精准恒定功率运动疗法治疗心肌梗死术后频发室性早搏一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 176-179.
[14] 单兴华, 唐文栋, 赵仙先. 延伸导管在室间隔穿孔介入治疗的新应用一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 126-128.
[15] 郑屹, 刘莹, 张煜坤, 李广平, 陈康寅, 刘彤. 既往及新发心房颤动对急性心肌梗死患者远期卒中风险的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 406-417.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?