切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 159 -166. doi: 10.3877/cma.j.issn.2095-1221.2023.03.005

论著

衰弱与非衰弱高龄老人外周血单个核细胞单细胞转录组特征差异分析
曾静, 范皎, 史镜琪, 刘静, 李春霖, 徐国纲, 李天志()   
  1. 100853 北京,解放军总医院第二医学中心内分泌科;100853 北京,国家老年疾病临床医学研究中心
    100853 北京,解放军总医院第二医学中心老年医学研究所;100853 北京,国家老年疾病临床医学研究中心
    100853 北京,国家老年疾病临床医学研究中心;100853 北京,解放军总医院第二医学中心
  • 收稿日期:2023-03-16 出版日期:2023-06-01
  • 通信作者: 李天志
  • 基金资助:
    国家重点研发计划(2020YFC2002706)

The transcriptome characteristics of single cells in the peripheral blood mononuclear cells between frail and non-frail elderly

Jing Zeng, Jiao Fan, Jingqi Shi, jing Liu, Chunlin Li, Guogang Xu, Tianzhi Li()   

  1. Department of Endocrinology, the Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
    Institute of Geriatrics, the Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
    National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2023-03-16 Published:2023-06-01
  • Corresponding author: Tianzhi Li
引用本文:

曾静, 范皎, 史镜琪, 刘静, 李春霖, 徐国纲, 李天志. 衰弱与非衰弱高龄老人外周血单个核细胞单细胞转录组特征差异分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 159-166.

Jing Zeng, Jiao Fan, Jingqi Shi, jing Liu, Chunlin Li, Guogang Xu, Tianzhi Li. The transcriptome characteristics of single cells in the peripheral blood mononuclear cells between frail and non-frail elderly[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(03): 159-166.

目的

已有研究表明衰老和衰弱影响人体免疫细胞转录组异质性和变异性。本研究着重探寻不同衰弱状态下高龄老人外周血转录组特征差异。

方法

下载基因表达数据库(GEO)中的GSE157007数据集,分析衰弱与非衰弱高龄老人外周血单个核细胞分布、特征,对差异表达基因(DEGs)进行京都基因与基因组百科全书(KEGG)通路富集分析,并采用CellChat包分析细胞间的相互作用和通讯情况。

结果

与非衰弱组相比,衰弱组中T细胞、单核细胞总比例降低,自然杀伤(NK)细胞比例升高,B细胞比例相当。组间各细胞亚群DEGs存在差异,通路富集分析发现DEGs主要富集于抗原呈递、肿瘤坏死因子信号通路和趋化因子信号等通路。进一步细胞通讯分析显示衰弱组细胞间相互作用数目和强度均少于非衰弱组,组间细胞间相互作用的模式和信号通路不同。

结论

不同衰弱状态的高龄老人外周血单细胞转录组特征存在差异。

Objective

Recent studies have found that aging and frailty affect transcriptome heterogeneity and variability. Based on the existing evidence, this study aims to explore the differences in the transcriptome characteristics of peripheral blood of older people under different frailty states.

Methods

The dataset (GSE157007) was downloaded from the Gene Expression Omnibus (GEO) . The distribution and characteristics of cells and the differentially expressed genes between frail and non-frail elderly were analyzed. The differentially expressed genes were performed by Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The interaction and communication between cells were also studied by CellChat package.

Results

Compared with the non-frail group, the proportion of T cells and monocytes in the frail group was reduced, while the ratio of natural killer cells was increased. No significant difference was found in the cluster of B cells. And there were significant differences in gene expression among cell clusters. KEGG pathway analysis showed that differentially expressed genes were mainly enriched in antigen presentation, Tumor necrosis factor signaling pathway, chemokine signaling pathways. Further analysis of cell communication showed that the number and intensity of interactions between cells of the frail group were less than those in the non-frail group, and frailty states might affect the mode and signaling pathway of interactions between cells.

Conclusion

Significant differences were observed in the transcriptome characteristics of single cells in older people with different frailty states.

图1 高龄老人不同衰弱状态外周血单个核细胞构成注:a图为不同衰弱状态来源细胞分布;b图为各个细胞聚类和亚群数量及分布;c图为各个细胞聚类和亚群在不同衰弱组间占比
图2 标记基因在各细胞亚群中的高表达情况
图3 高龄老人不同衰弱状态下各个细胞亚群差异基因火山图注:a图为记忆CD4+ T;b图为其他T2细胞;c图为B细胞;d图为单核细胞I亚群;e图为NK2细胞亚群;f图为mDCs细胞
图4 高龄老人不同衰弱状态下各个细胞亚群差异基因KEGG富集图
图5 CellChat分析高龄老人不同衰弱状态的各个细胞亚群相互作用情况注:a图为细胞间相互作用数量和强度对比;b图为细胞间相互作用数量和强度差异热图
图6 不同衰弱状态部分差异信号通路网络图(边的宽度代表细胞间通讯概率值大小)
图7 不同衰弱状态下分泌细胞的输出和输入通讯模式分析注:a图为衰弱样本;b图为非衰弱样本;线条宽度代表该细胞群或信号通路对每个对应模式的重要程度
图8 高龄老人不同衰弱状态bulk RNA-seq差异表达基因火山图和GO富集图
1
Dent E, Lien C, Lim WS, et al. The asia-pacific clinical practice guidelines for the management of frailty[J]. J Am Med Dir Assoc, 2017, 18(7):564-575.
2
Vaupel JW, Manton KG, Stallard E. The impact of heterogeneity in individual frailty on the dynamics of mortality[J]. Demography, 1979, 16(3):439-454.
3
Morley JE, Vellas B, Van Kan GA, et al. Frailty consensus: a call to action[J]. J Am Med Dir Assoc, 2013, 14(6):392-397.
4
Hoogendijk EO, Afilalo J, Ensrud KE, et al. Frailty: implications for clinical practice and public health[J]. Lancet, 2019, 394(10206):1365-1375.
5
Reynolds LM, Ding J, Taylor JR, et al. Transcriptomic profiles of aging in purified human immune cells[J]. BMC Genomics, 2015, 16(1):333.doi: 10.1186/s12864-015-1522-4.
6
Peters MJ, Joehanes R, Pilling LC, et al. The transcriptional landscape of age in human peripheral blood[J]. Nat Commun, 2015, 6:8570.doi: 10.1038/ncomms9570.
7
Zheng Y, Liu X, Le W, et al. A human circulating immune cell landscape in aging and COVID-19[J]. Protein Cell, 2020, 11(10):740-770.
8
Huang Z, Chen B, Liu X, et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis[J]. Proc Natl Acad Sci U S A, 2021, 118(33):e2023216118.doi: 10.1073/pnas.2023216118.
9
Aging Atlas C. Aging Atlas: a multi-omics database for aging biology[J]. Nucleic Acids Res, 2021, 49(D1):D825-D830.
10
Luo OJ, Lei W, Zhu G, et al. Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty[J]. Nat Aging, 2022, 2(4):348-364.
11
Moehling KK, Zhai B, Schwarzmann WE, et al. The impact of physical frailty on the response to inactivated influenza vaccine in older adults[J]. Aging (Albany NY), 2020, 12(24):24633-24650.
12
Pansarasa O, Pistono C, Davin A, et al. Altered immune system in frailty: genetics and diet may influence inflammation[J]. Ageing Res Rev, 2019, 54:100935.doi: 10.1016/j.arr.2019.100935.
13
中华医学会老年医学分会. 老年患者衰弱评估与干预中国专家共识[J]. 中华老年医学杂志, 2017, 36(3):251-256.
14
Wilson D, Jackson T, Sapey E, et al. Frailty and sarcopenia: The potential role of an aged immune system[J]. Ageing Res Rev, 2017, 36:1-10.
15
Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging[J]. Immun Ageing, 2020, 17:2.doi: 10.1186/s12979-020-0173-8.
16
Vescovini R, Fagnoni FF, Telera AR, et al. Naive and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus[J]. Age (Dordr), 2014, 36(2):625-640.
17
Rybtsova N, Berezina TN, Rybtsov S. Molecular Markers of blood cell populations can help estimate aging of the immune system[J]. Int J Mol Sci, 2023, 24(6):5708.doi: 10.3390/ijms24065708.
18
Samson LD, Am HB, Ferreira JA, et al. In-depth immune cellular profiling reveals sex-specific associations with frailty[J]. Immun Ageing, 2020, 17:20.doi: 10.1186/s12979-020-00191-z.
19
Johnstone J, Parsons R, Botelho F, et al. T-cell phenotypes predictive of frailty and mortality in elderly nursing home residents[J]. J Am Geriatr Soc, 2017, 65(1):153-159.
20
Collerton J, Martin-Ruiz C, Davies K, et al. Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85+ Study[J]. Mech Ageing Dev, 2012, 133(6):456-466.
21
Sansoni P, Vescovini R, Fagnoni F, et al. The immune system in extreme longevity[J]. Exp Gerontol, 2008, 43(2):61-65.
22
Garbe K, Bratke K, Wagner S, et al. Plasmacytoid dendritic cells and their Toll-like receptor 9 expression selectively decrease with age[J]. Hum Immunol, 2012, 73(5):493-497.
23
Verschoor CP, Johnstone J, Millar J, et al. Alterations to the frequency and function of peripheral blood monocytes and associations with chronic disease in the advanced-age, frail elderly[J]. PLoS One, 2014, 9(8):e104522.doi: 10.1371/journal.pone.0104522.
24
Lang PO, Michel JP, Zekry D. Frailty syndrome: a transitional state in a dynamic process[J]. Gerontology, 2009, 55(5):539-549.
25
Yao X, Li H, Leng SX. Inflammation and immune system alterations in frailty[J]. Clin Geriatr Med, 2011, 27(1):79-87.
26
Robbins PD. Extracellular vesicles and aging[J]. Stem Cell Investig, 2017, 4:98.doi: 10.21037/sci.2017.12.03.
27
Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging[J]. Aging Cell, 2018, 17(2):e12734.doi: 10.1111/acel.12734.
28
Monti D, Ostan R, Borelli V, et al. Inflammaging and human longevity in the omics era[J]. Mech Ageing Dev, 2017, 165(Pt B):129-138.
29
Pansarasa O, Mimmi MC, Davin A, et al. Inflammation and cell-to-cell communication, two related aspects in frailty[J]. Immun Ageing, 2022, 19(1):49.doi: 10.1186/s12979-022-00306-8.
30
Gonçalves RSDSA, Maciel áCC, Rolland Y, et al. Frailty biomarkers under the perspective of geroscience: A narrative review[J]. Ageing Res Rev, 2022, 81:101737.doi: 10.1016/j.arr.2022.101737.
31
Pinti M, Gibellini L, Lo Tartaro D, et al. A comprehensive analysis of cytokine network in centenarians[J]. Int J Mol Sci, 2023, 24(3):2719.doi: 10.3390/ijms24032719.
32
Herrero C, Sebastian C, Marques L, et al. Immunosenescence of macrophages: reduced MHC class II gene expression[J]. Exp Gerontol, 2002, 37(2-3):389-394.
33
Vanguilder HD, Bixler GV, Brucklacher RM, et al. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment[J]. J Neuroinflammation, 2011, 8:138.doi: 10.1186/1742-2094-8-138.
34
Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin[J]. Science, 2005, 307(5708):426-430.
35
Revollo JR, Korner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme[J]. Cell Metab, 2007, 6(5):363-375.
36
Chen H, Xia T, Zhou L, et al. Gene organization, alternate splicing and expression pattern of porcine visfatin gene[J]. Domest Anim Endocrinol, 2007, 32(3):235-245.
37
Dahl TB, Holm S, Aukrust P, et al. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology[J]. Annu Rev Nutr, 2012, 32:229-243.
[1] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[2] 杜滨和, 徐楠, 杨云川, 崔培元. 5项改良衰弱指数预测胰十二指肠切除术近期预后的价值探讨[J]. 中华普通外科学文献(电子版), 2023, 17(06): 444-448.
[3] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[4] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[5] 刘跃刚, 薛振峰. 腹腔镜腹股沟疝日间手术在老年患者中的安全性分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 711-714.
[6] 代格格, 杨丽, 胡媛媛, 周文婷. 手术室综合干预在老年腹股沟疝患者中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 759-763.
[7] 赵宏霞, 刘静, 李晓薇, 陈金婵, 汪志霞. 腹腔镜下经阴道子宫全切术联合阴道前后壁修补术治疗老年子宫脱垂效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 561-565.
[8] 孙伟, 林丽, 师高洋. 超声引导下连续髂腹股沟-髂腹下神经阻滞与腹横肌平面阻滞在老年腹股沟疝手术中应用效果比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 593-597.
[9] 张汪, 徐淑英, 张爱华, 夏芬荣, 汪露. 手术室体温护理结合细节护理干预在老年腹股沟疝围手术期的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 635-638.
[10] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[11] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[12] 姜里蛟, 张峰, 周玉萍. 多学科诊疗模式救治老年急性非静脉曲张性上消化道大出血患者的临床观察[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 520-524.
[13] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[14] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[15] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
阅读次数
全文


摘要