切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 40 -43. doi: 10.3877/cma.j.issn.2095-1221.2019.01.008

所属专题: 文献

综述

脂肪来源干细胞治疗心肌梗死的现状及策略
孔艳1, 李玉泉1, 杨向群1,()   
  1. 1. 200433 上海,海军军医大学人体解剖学教研室(再生医学研究中心)
  • 收稿日期:2018-12-30 出版日期:2019-02-01
  • 通信作者: 杨向群

Current situation and strategies in the treatment of myocardial infarction by adipose-derived stem cells

Yan Kong1, Yuquan Li1, Xiangqun Yang1,()   

  1. 1. Department of Anatomy, Regenerative Medicine Center, Naval Medical University, Shanghai 200433, China
  • Received:2018-12-30 Published:2019-02-01
  • Corresponding author: Xiangqun Yang
  • About author:
    Corresponding author:Yang Xiangqun, Email:
引用本文:

孔艳, 李玉泉, 杨向群. 脂肪来源干细胞治疗心肌梗死的现状及策略[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 40-43.

Yan Kong, Yuquan Li, Xiangqun Yang. Current situation and strategies in the treatment of myocardial infarction by adipose-derived stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 40-43.

急性心肌梗死是最常见的心血管疾病之一,由于冠状动脉供血不全导致心肌细胞大量坏死、生存微环境恶化,近期可发生心肌细胞机械-电生理功能紊乱,远期可导致心力衰竭。目前的临床治疗方法虽能在一定程度上改善心功能,减轻心室重塑,但由于心肌细胞再生能力有限,心脏功能难以完全恢复正常。近年来,脂肪来源干细胞移植治疗急性心肌梗死受到广泛关注,但由于移植后细胞的存留和存活率普遍较低,总体治疗效果并不理想。本文对目前脂肪来源干细胞治疗急性心肌梗死的现况及提高其疗效的途径和方法作一综述。

Acute myocardial infarction is one of the most common cardiovascular diseases. Due to the insufficiency of coronary artery blood supply, cardiomyocyte death occurs and microenvironment deteriorates, followed by mechanical-electrophysiological dysfunction in early stage and heart failure in long term. At present, treatment of myocardial infarction can improve cardiac function and reduce ventricular remodeling in a certain extent. However, it is difficult to restore cardiac function completely due to the limited regenerative capacity of cardiomyocytes. In recent years, transplantation of adipose-derived stem cells has attracted extensive attention. However, the cell survival and engraftment rate after transplantation are generally low and the therapeutic effect is not ideal. This article reviews the current situation of adipose-derived stem cells in the treatment of acute myocardial infarction and the ways and methods that may improve its therapeutic effect.

[1]
Finegold JA,Asaria P,Francis DP. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations[J]. Int J Cardiol, 2013, 168(2):934-945.
[2]
Meyer IS,Jungmann A,Dieterich C, et al. The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction[J]. EMBO Mol Med, 2017, 9(9):1279-1293.
[3]
Miao C,Lei M,Hu W, et al. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction[J]. Stem Cell Res Ther, 2017, 8(1):242.
[4]
Rufaihah AJ,Yasa IC,Ramanujam VS, et al. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction[J]. Acta Biomater, 2017, 58:102-112.
[5]
Ji ST,Kim H,Yun J, et al. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering[J]. Stem Cells Int, 2017, 2017:3945403.
[6]
Henry TD,Pepine CJ,Lambert CR, et al. The Athena trials: autologous Adipose-Derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction[J]. Catheter Cardiovasc Interv, 2017, 89(2):169-177.
[7]
Gautam M,Fujita D,Kimura K, et al. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model[J]. J Mol Cell Cardiol, 2015, 81:139-149.
[8]
Lee HW,Lee HC,Park JH, et al. Effects of intracoronary administration of autologous adipose Tissue-Derived stem cells on acute myocardial infarction in a porcine model[J]. Yonsei Med J, 2015, 56(6):1522-1529.
[9]
Mazo M,Hernández S,Gavira JJ, et al. Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction[J]. Cell Transplant, 2012, 21(12):2723-2733.
[10]
Ma T,Sun J,Zhao Z, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases[J]. Stem Cell Res Ther, 2017, 8(1):124.
[11]
Chen LA,Qin FM,Ge MH, et al. Application of Adipose-Derived stem cells in heart disease[J]. J Cardiovasc Transl Res, 2014, 7(7):651-663.
[12]
Luo Q,Guo D,Liu G, et al. Exosomes from MiR-126-Overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
[13]
Yuan MJ,Maghsoudi T,Wang T. Exosomes mediate the intercellular communication after myocardial infarction[J]. Int J Med Sci, 2016, 13(2):113-116.
[14]
Wang BZ,Ma X,Zhao L, et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction[J]. Clin Exp Med, 2016, 16(4):539-550.
[15]
Meng X,Li JP,Yu M, et al. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction[J]. J Cell Physiol, 2018, 233(1):587-595.
[16]
Raish M. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-kappa B signaling pathway[J]. Int J Biol Macromol, 2017, 97:544-551.
[17]
Liu J,Zhu P,Song P, et al. Pretreatment of adipose derived stem cells with curcumin facilitates myocardial recovery via antiapoptosis and angiogenesis[J]. Stem Cells Int, 2015, 2015:638153.
[18]
Zhu P,Liu JF,Shi JX, et al. Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction[J]. J Cell Mol Med, 2015, 19(9):2232-2243.
[19]
Liu J,Wang H,Wang Y, et al. Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart[J]. PLoS One, 2014, 9(6):e99756.
[20]
Liu J,Wang H,Wang Y, et al. The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation[J]. J Cell Mol Med, 2014, 18(7):1381-1391.
[21]
Yan W,Guo Y,Tao L, et al. C1q/tumor necrosis Factor-Related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways[J]. Circulation, 2017, 136(22):2162-2177.
[22]
Chow A,Stuckey DJ,Kidher E, et al. Human induced pluripotent stem Cell-Derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction[J]. Stem Cell Reports, 2017, 9(5):1415-1422.
[23]
Efraim Y,Sarig H,Cohen Anavy N, et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction[J]. Acta Biomater, 2017, 50:220-233.
[24]
Diaz-Herraez P,Saludas L,Pascual-Gil S, et al. Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model[J]. J Control Release, 2017, 249:23-31.
[25]
Ma Q,Yang J,Huang X, et al. Poly(lactide-co-gycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue[J]. Stem Cells, 2018, 36 (4):540-550.
[26]
Wang W,Tan B,Chen J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials, 2018, 160:69-81.
[27]
Bao R,Tan B,Liang S, et al. A pi-pi conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction[J]. Biomaterials, 2017, 122:63-71.
[28]
Wang L,Meier EM,Tian S, et al. Transplantation of Isl1(+) cardiac progenitor cells in small intestinal submucosa improves infarcted heart function[J]. Stem Cell Res Ther, 2017, 8(1):230.
[29]
Wang K,Jiang Z,Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21[J]. Stem Cells Transl Med, 2017, 6(1):209-222.
[30]
Lee CY,Shin S,Lee J, et al. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart[J]. Int J Mol Sci, 2016, 17(10). pii: E1752.
[31]
Liu J,Jiang M,Deng S, et al. miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage[J]. Mol Ther Nucleic Acids, 2018, 11:103-115.
[32]
Pan J,Alimujiang M,Chen Q, et al. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J]. J Cell Biochem, 2019, 120(3):4433-4443.
[1] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[2] 韩肖燕, 杨桦. 中孕期孕妇血清胎盘生长因子水平低与胎儿不良预后的关系[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 398-402.
[3] 邵小丽, 林燕, 张玲玲, 韩亚琴. 超声引导下子宫肌瘤注射聚桂醇硬化术联合术后米非司酮治疗临床疗效分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 353-360.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 李雪, 韩萌萌, 冯雪园, 马宁. 人表皮生长因子受体2低表达乳腺癌的研究进展及挑战[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 308-312.
[6] 刘伟, 安杰, 智亮辉, 陈金辉. 阿帕替尼联合新辅助化疗对局部晚期结肠癌的临床疗效研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 199-203.
[7] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[8] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[9] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[10] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[11] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[12] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[13] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
[14] 徐来英, 程效, 戴亨纷, 侯俊凉, 苏怡林, 张彦. 药物联合个体化精准恒定功率运动疗法治疗心肌梗死术后频发室性早搏一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 176-179.
[15] 郑屹, 刘莹, 张煜坤, 李广平, 陈康寅, 刘彤. 既往及新发心房颤动对急性心肌梗死患者远期卒中风险的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 406-417.
阅读次数
全文


摘要