切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 40 -43. doi: 10.3877/cma.j.issn.2095-1221.2019.01.008

所属专题: 文献

综述

脂肪来源干细胞治疗心肌梗死的现状及策略
孔艳1, 李玉泉1, 杨向群1,()   
  1. 1. 200433 上海,海军军医大学人体解剖学教研室(再生医学研究中心)
  • 收稿日期:2018-12-30 出版日期:2019-02-01
  • 通信作者: 杨向群

Current situation and strategies in the treatment of myocardial infarction by adipose-derived stem cells

Yan Kong1, Yuquan Li1, Xiangqun Yang1,()   

  1. 1. Department of Anatomy, Regenerative Medicine Center, Naval Medical University, Shanghai 200433, China
  • Received:2018-12-30 Published:2019-02-01
  • Corresponding author: Xiangqun Yang
  • About author:
    Corresponding author:Yang Xiangqun, Email:
引用本文:

孔艳, 李玉泉, 杨向群. 脂肪来源干细胞治疗心肌梗死的现状及策略[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 40-43.

Yan Kong, Yuquan Li, Xiangqun Yang. Current situation and strategies in the treatment of myocardial infarction by adipose-derived stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 40-43.

急性心肌梗死是最常见的心血管疾病之一,由于冠状动脉供血不全导致心肌细胞大量坏死、生存微环境恶化,近期可发生心肌细胞机械-电生理功能紊乱,远期可导致心力衰竭。目前的临床治疗方法虽能在一定程度上改善心功能,减轻心室重塑,但由于心肌细胞再生能力有限,心脏功能难以完全恢复正常。近年来,脂肪来源干细胞移植治疗急性心肌梗死受到广泛关注,但由于移植后细胞的存留和存活率普遍较低,总体治疗效果并不理想。本文对目前脂肪来源干细胞治疗急性心肌梗死的现况及提高其疗效的途径和方法作一综述。

Acute myocardial infarction is one of the most common cardiovascular diseases. Due to the insufficiency of coronary artery blood supply, cardiomyocyte death occurs and microenvironment deteriorates, followed by mechanical-electrophysiological dysfunction in early stage and heart failure in long term. At present, treatment of myocardial infarction can improve cardiac function and reduce ventricular remodeling in a certain extent. However, it is difficult to restore cardiac function completely due to the limited regenerative capacity of cardiomyocytes. In recent years, transplantation of adipose-derived stem cells has attracted extensive attention. However, the cell survival and engraftment rate after transplantation are generally low and the therapeutic effect is not ideal. This article reviews the current situation of adipose-derived stem cells in the treatment of acute myocardial infarction and the ways and methods that may improve its therapeutic effect.

[1]
Finegold JA,Asaria P,Francis DP. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations[J]. Int J Cardiol, 2013, 168(2):934-945.
[2]
Meyer IS,Jungmann A,Dieterich C, et al. The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction[J]. EMBO Mol Med, 2017, 9(9):1279-1293.
[3]
Miao C,Lei M,Hu W, et al. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction[J]. Stem Cell Res Ther, 2017, 8(1):242.
[4]
Rufaihah AJ,Yasa IC,Ramanujam VS, et al. Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction[J]. Acta Biomater, 2017, 58:102-112.
[5]
Ji ST,Kim H,Yun J, et al. Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering[J]. Stem Cells Int, 2017, 2017:3945403.
[6]
Henry TD,Pepine CJ,Lambert CR, et al. The Athena trials: autologous Adipose-Derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction[J]. Catheter Cardiovasc Interv, 2017, 89(2):169-177.
[7]
Gautam M,Fujita D,Kimura K, et al. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model[J]. J Mol Cell Cardiol, 2015, 81:139-149.
[8]
Lee HW,Lee HC,Park JH, et al. Effects of intracoronary administration of autologous adipose Tissue-Derived stem cells on acute myocardial infarction in a porcine model[J]. Yonsei Med J, 2015, 56(6):1522-1529.
[9]
Mazo M,Hernández S,Gavira JJ, et al. Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction[J]. Cell Transplant, 2012, 21(12):2723-2733.
[10]
Ma T,Sun J,Zhao Z, et al. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases[J]. Stem Cell Res Ther, 2017, 8(1):124.
[11]
Chen LA,Qin FM,Ge MH, et al. Application of Adipose-Derived stem cells in heart disease[J]. J Cardiovasc Transl Res, 2014, 7(7):651-663.
[12]
Luo Q,Guo D,Liu G, et al. Exosomes from MiR-126-Overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
[13]
Yuan MJ,Maghsoudi T,Wang T. Exosomes mediate the intercellular communication after myocardial infarction[J]. Int J Med Sci, 2016, 13(2):113-116.
[14]
Wang BZ,Ma X,Zhao L, et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction[J]. Clin Exp Med, 2016, 16(4):539-550.
[15]
Meng X,Li JP,Yu M, et al. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction[J]. J Cell Physiol, 2018, 233(1):587-595.
[16]
Raish M. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-kappa B signaling pathway[J]. Int J Biol Macromol, 2017, 97:544-551.
[17]
Liu J,Zhu P,Song P, et al. Pretreatment of adipose derived stem cells with curcumin facilitates myocardial recovery via antiapoptosis and angiogenesis[J]. Stem Cells Int, 2015, 2015:638153.
[18]
Zhu P,Liu JF,Shi JX, et al. Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction[J]. J Cell Mol Med, 2015, 19(9):2232-2243.
[19]
Liu J,Wang H,Wang Y, et al. Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart[J]. PLoS One, 2014, 9(6):e99756.
[20]
Liu J,Wang H,Wang Y, et al. The stem cell adjuvant with Exendin-4 repairs the heart after myocardial infarction via STAT3 activation[J]. J Cell Mol Med, 2014, 18(7):1381-1391.
[21]
Yan W,Guo Y,Tao L, et al. C1q/tumor necrosis Factor-Related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways[J]. Circulation, 2017, 136(22):2162-2177.
[22]
Chow A,Stuckey DJ,Kidher E, et al. Human induced pluripotent stem Cell-Derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction[J]. Stem Cell Reports, 2017, 9(5):1415-1422.
[23]
Efraim Y,Sarig H,Cohen Anavy N, et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction[J]. Acta Biomater, 2017, 50:220-233.
[24]
Diaz-Herraez P,Saludas L,Pascual-Gil S, et al. Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model[J]. J Control Release, 2017, 249:23-31.
[25]
Ma Q,Yang J,Huang X, et al. Poly(lactide-co-gycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue[J]. Stem Cells, 2018, 36 (4):540-550.
[26]
Wang W,Tan B,Chen J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials, 2018, 160:69-81.
[27]
Bao R,Tan B,Liang S, et al. A pi-pi conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction[J]. Biomaterials, 2017, 122:63-71.
[28]
Wang L,Meier EM,Tian S, et al. Transplantation of Isl1(+) cardiac progenitor cells in small intestinal submucosa improves infarcted heart function[J]. Stem Cell Res Ther, 2017, 8(1):230.
[29]
Wang K,Jiang Z,Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21[J]. Stem Cells Transl Med, 2017, 6(1):209-222.
[30]
Lee CY,Shin S,Lee J, et al. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart[J]. Int J Mol Sci, 2016, 17(10). pii: E1752.
[31]
Liu J,Jiang M,Deng S, et al. miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage[J]. Mol Ther Nucleic Acids, 2018, 11:103-115.
[32]
Pan J,Alimujiang M,Chen Q, et al. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J]. J Cell Biochem, 2019, 120(3):4433-4443.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 张忆雪, 陈漠水, 张福伟, 郑颖, 孙定军, 叶青妃. 贝那普利通过下调心锚重复蛋白改善心肌梗死后心肌重塑[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 292-299.
[4] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[5] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[6] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[7] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[10] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[11] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[12] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[13] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[14] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要