切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 35 -39. doi: 10.3877/cma.j.issn.2095-1221.2019.01.007

所属专题: 文献

论著

hUC-MSCs下调HIF-1α及VEGF表达对NAFLD大鼠肝脏损伤的作用
王文清1,(), 易文城1, 林拥华1   
  1. 1. 362000 泉州,福建医科大学附属第二医院普通外科
  • 收稿日期:2018-12-11 出版日期:2019-02-01
  • 通信作者: 王文清

Human umbilical cord mesenchymal stem cells improve liver damage of non-alcoholic fatty liver disease rats by down regulating HIF-1α/VEGF pathway

Wenqing Wang1,(), Wencheng Yi1, Yonghua Lin1   

  1. 1. Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
  • Received:2018-12-11 Published:2019-02-01
  • Corresponding author: Wenqing Wang
  • About author:
    Corresponding author: Wang Wenqing, Email:
引用本文:

王文清, 易文城, 林拥华. hUC-MSCs下调HIF-1α及VEGF表达对NAFLD大鼠肝脏损伤的作用[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 35-39.

Wenqing Wang, Wencheng Yi, Yonghua Lin. Human umbilical cord mesenchymal stem cells improve liver damage of non-alcoholic fatty liver disease rats by down regulating HIF-1α/VEGF pathway[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(01): 35-39.

目的

探讨脐带间充质干细胞(hUC-MSCs)介导HIF-1α/VEGF通路对非酒精性脂肪性肝病(NAFLD)大鼠肝脏损伤的作用。

方法

SD大鼠随机分为正常对照组(NC组)、模型对照组(MC组)和MC+hUC-MSCs组。每组鼠数为7只,分别喂食不同饲料和治疗8周。检测大鼠谷丙转氨酶(ALT)、谷草转氨酶(AST)和胰岛素抵抗指数(HOMA-IR)。光镜观察大鼠肝脏组织病理改变,计算NAFLD活动度积分(NAS);Western Blot法检测大鼠肝脏组织HIF-?1α和VEGF蛋白表达。组间比较采用单因素方差分析、相关分析选用pearson。

结果

(1)治疗末,NC组ALT、AST和HOMA-IR分别为(41.1±5.9)U/L,(51.7±5.2)U/L,(1.93±0.22)?U/?L低于MC组(153.9±7.1)U/L,(169.8±15.9)U/L,(23.20±2.63)U/L差异具有统计学意义(P?< 0.05);与MC组比较,MC+hUC-MSCs组大鼠ALT、AST和HOMA-IR降低分别为(90.7±8.1)?U/?L,(110.0±13.1)U/L,(8.43±1.39)U/L差异具有统计学意义(P?< 0.05)。(2)光镜下NC组肝细胞形态正常;MC组肝细胞呈现脂肪变性,较多细胞核变形,肝小叶排列不齐伴炎症细胞浸润;以上肝组织病理改变在MC+hUC-MSCs组明显改善。与NC组比较,MC组大鼠NAS积分增高;与MC组比较,MC+hUC-MSCs组大鼠NAS积分降低[(0.42 ±0.23)分vs (9.15±0.41)?分、(5.15±0.29)分]。(3)Western Blot法检测肝脏组织HIF-1α和VEGF蛋白表达改变:与NC组比较,MC组大鼠HIF-1α和VEGF蛋白表达均增高(P均< 0.05);与MC组比较,MC+hUC-?MSCs组大鼠HIF-1α和VEGF蛋白表达均降低(P均< 0.05)。单因素相关分析显示大鼠肝脏组织HIF-?1α表达与HOMA-IR指数呈正相关(P均< 0.05)。而且,大鼠肝脏组织NAS评分与肝脏组织HIF-?1α、VEGF表达亦呈正相关(r值分别为0.901、0.874,P均< 0.05)。

结论

?hUC-?MSCs对高糖高脂饲料喂养诱导的NAFLD大鼠受损肝脏功能具有改善作用,其机制与其下调HIF-?1α/?VEGF通路相关。

Objective

To evaluate the protective effect of human umbilical cord mesenchymal stem cells on non-alcoholic fatty liver disease and its relationship with HIF-1α/?VEGF mechanism in rats.

Methods

Rats were divided randomly into three groups: normal control (NC) , non-alcoholic fatty liver disease model (MC) and hUC-MSCs treatment group (MC+hUC-?MSCs) . The number of each group was eight, the rats of each group were fed different diets and received 8 weeks' intervention. At the end of treatment, ALT, AST and HOMA-IR were measured respectively. The pathologyical changes of liver tissue were observed by light microscope. Then NAS was calculated. The expression of HIF-1α and VEGF protein in liver tissues were detected by Western Blot.

Results

(1) At the end of treatment, compared with the NC group, the values of ALT, AST and HOMA-IR in the MC group were significantly raised (P < 0.05) . MC, ALT, AST and HOMA-?IR were significantly reduced in the MC+hUC-MSCs group. (2) By light microscope: The hepatocyte morphology was normal in NC group. The hepatocyte showed marked steatosis, more nuclear deformation, the lobules were misaligned with inflammatory cell infiltration in the MC group. The above liver histopathological changes were improved in the hUC-MSCs group. Compared with NC group, NAS was increased in the MC group, which could be reversed by hUC-MSCs[ (0.42?± 0.23) vs (9.15±0.41) , (5.15±0.29) ]. (3) Compared with the NC group, the HIF-1α and VEGF protein expression by Western Blot in the liver tissues were significantly raised respectively. Compared with the MC group, the expressions indexes of HIF-1α and VEGF were reversed in the hUC-MSCs group (P < 0.05) . Single factor correlation analysis showed that HIF-1α protein level of of the liver tissues was dependent on HOMA-IR. Further, NAS score was dependent on HIF-1α and VEGF expression (r = 0.901、0.874, P < 0.05) .

Conclusions

Human umbilical cord mesenchymal stem cells can improve liver damage of non-alcoholic fatty liver disease rats. The effects may be related to down regulating HIF-1α /VEGF pathway.

表1 各组大鼠治疗8周ALT、AST和HOMA-IR比较( ± s)
图1 光镜下观察各组大鼠治疗8周肝脏组织病理改变(HE染色,×200)
图2 各组大鼠治疗8周Western Blot法检测肝脏组织VEGF、HIF-1α和GAPDH蛋白表达水平
图3 各组大鼠治疗8周Western Blot法检测肝脏组织HIF-?1α和VEGF相对蛋白表达
[1]
Younossi ZM,Stepanova M,Afendy M, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008[J]. Clin Gastroenterol Hepatol, 2011, 9(6): 524-530.
[2]
Angulo P,Keach JC,Batts KP,et a1. IndepeIndent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis[J]. Hepatology, 1999, 30(6):1356-1362.
[3]
Li HE,Wu CY. Research progress on the protective effect of scutellarin in cerebral ischemia[J]. Chin J Neuroanat, 2017, 2(33):237-240.
[4]
Rosenberger C,Rosen S,Shina A, et al. Activation of hypoxia inducible factors ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney[J]. Nephrol Dial Transplant, 2008, 23(11):3472-3478.
[5]
Guo H,Zhou H,Lu J, et al. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury[J].Neural Regen Res, 2016, 11(1):174-179.
[6]
Cho KA,Ju SY,Cho SJ, et al. Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow[J]. Cell Biol Int, 2009, 33(7):772-777.
[7]
Lee KD,Kuo TK,Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells[J]. Hepatology, 2004, 40(6):1275-1284.
[8]
Kuroda Y,Kitada M,Wakao S, et al. Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells?[J]. Arch Immunol Ther Exp (Warsz), 2011, 59(5):369-378.
[9]
Zeyda M,Stulnig TM. Obesity, inflammation, and insulin resistance-a mini-review[J]. Gerontology, 2009, 55(4):379-386.
[1] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[4] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[5] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[6] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[7] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[8] 李运林, 娄冬华. 滨海县非酒精性脂肪肝发病与消退的影响因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 354-358.
[9] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[10] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
[11] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[12] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[13] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
[14] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
[15] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
阅读次数
全文


摘要