切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (04) : 234 -239. doi: 10.3877/cma.j.issn.2095-1221.2018.04.008

所属专题: 文献

综述

多能干细胞向雄性生殖细胞定向分化的研究进展
王新杰1, 姬小利1, 王敏2, 周君梅2,()   
  1. 1. 200040 上海交通大学附属儿童医院中心实验室
    2. 200040 上海市儿童医院中心实验室
  • 收稿日期:2018-03-09 出版日期:2018-08-01
  • 通信作者: 周君梅
  • 基金资助:
    国家自然科学基金(81270742、81370700、81470911); 上海交通大学"医工交叉"基金(YG2016MS32); 上海市卫计委重点课题(201540389)

Research progress in differentiation of pluripotent stem cells to male germ cells

Xinjie Wang1, Xiaoli Ji1, Min Wang2, Junmei Zhou2,()   

  1. 1. Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
    2. Department of Central Laboratory, Shanghai Children's Hospital, Shanghai 200040, China
  • Received:2018-03-09 Published:2018-08-01
  • Corresponding author: Junmei Zhou
  • About author:
    Corresponding author: Zhou Junmei, Email:
引用本文:

王新杰, 姬小利, 王敏, 周君梅. 多能干细胞向雄性生殖细胞定向分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(04): 234-239.

Xinjie Wang, Xiaoli Ji, Min Wang, Junmei Zhou. Research progress in differentiation of pluripotent stem cells to male germ cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(04): 234-239.

生殖健康是生命科学领域关注的核心之一,各种原因所致男性不育亟待解决,然而由于伦理限制等原因,缺少合适的具有人类遗传背景的研究模型开展研究。胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)均属于多能干细胞,具有多向分化潜能。一方面,可利用ESCs?/?iPSCs向生殖细胞分化的模型研究人类生殖细胞的发育规律,另一方面,在此基础上,可建立带有人类疾病遗传背景的iPSCs模型,体外诱导其向雄性生殖细胞分化,利用该模型研究男性不育的发病机制。由于精子在体内的形成遵循一定规律,体外环境中不同发育阶段的生殖细胞在不同诱导因子作用下才可稳定地往下一阶段定向分化,因此,诱导ESCs?/?iPSCs向雄性生殖细胞方向分化时,诱导因子的种类和加入时间的选择应根据生殖细胞的体内发育特征而定,并且在诱导的不同阶段循序加入,以此模拟精子在体内的形成过程,进而更好地研究男性不育的发病机制。本文将对多能干细胞向雄性生殖细胞定向分化的常用诱导因子及存在问题和展望进行综述,为相关研究的开展提供借鉴。

Reproduction is one of the focuses in the field of life science and male infertility is still an unmet medical condition. However, due to ethical restrictions, there is a lack of suitable research models with human genetic background for the study of male infertility. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are both pluripotent stem cells with multi-?lineage potentials including differentiating into male germ cells. These research models could not only be applied to study the normal development of human germ cells, but also could be applied to study the pathogenesis of male infertility. Since the formation of sperm in vivo follows certain temporal and spatial regulation, in vitro germ cell differentiation from ESCs/iPSCs could be obtained through sequential supplementation of factors simulating the formation of sperm in vivo. In this review, we intend to summarize the common inducers for differentiating ESCs/iPSCs into male germ cells at developmental stage, as well as discussing the existing problems and prospects for the research of male infertility.

1
Nayernia K,Nolte J,Michelmann HW, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice[J]. Dev Cell, 2006, 11(1):125-132.
2
Clark AT,Bodnar MS,Fox M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro[J]. Hum Mol Genet, 2004, 13(7):727-739.
3
Simonson OE,Domogatskaya A,Volchkov P, et al. The safety of human pluripotent stem cells in clinical treatment[J]. Ann Med, 2015, 47(5):370-380.
4
Takahashi K,Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
5
Takahashi K,Tanabe K,Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
6
Yu JY,Vodyanik MA,Smuga-Otto KA, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
7
Shtrichman R,Germanguz I,Itskovitz-Eldor J. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine[J]. Curr Mol Med, 2013, 13(5):792-805.
8
Stukenborg JB,Kjartansdóttir KR,Reda A, et al. Male germ cell development in humans[J]. Horm Res Paediatr, 2014, 81(1):2-12.
9
Yang S,Yuan Q,Niu M, et al. BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2[J]. Reproduction, 2017, 153(2):211-220.
10
Makoolati Z,Movahedin M,Forouzandeh-Moghadam M. Bone morphogenetic protein 4 is an efficient inducer for mouse embryonic stem cell differentiation into primordial germ cell[J]. In Vitro Cell Dev Biol Anim, 2011, 47(5/6):391-398.
11
Ohinata Y,Ohta H,Shigeta M, et al. A signaling principle for the specification of the germ cell lineage in mice[J]. Cell, 2009, 137(3):571-584.
12
Kee K,Angeles VT,Flores M, et al. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation[J]. Nature, 2009, 462(7270):222-225.
13
Panula S,Medrano JV,Kee K, et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells[J]. Hum Mol Genet, 2011, 20(4):752-762.
14
Sasaki K,Yokobayashi S,Nakamura T, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells[J]. Cell Stem Cell, 2015, 17(2):178-194.
15
Hayashi K,Ohta H,Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells[J]. Cell, 2011, 146(4):519-532.
16
Wang H,Xiang J,Zhang W, et al. Induction of germ cell-like cells from porcine induced pluripotent stem cells[J]. Sci Rep, 2016, 6:27256.
17
Gafni O,Weinberger L,Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504(7479):282-286.
18
O'shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis[J]. Semin Cell Dev Biol, 2014, 29:55-65.
19
Ruwanpura SM,Mclachlan RI,Meachem SJ. Hormonal regulation of male germ cell development[J]. J Endocrinol, 2010, 205(2):117-131.
20
Chen LY,Brown PR,Willis WB, et al. Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance[J]. Endocrinology, 2014, 155(12):4964-4974.
21
Minaee Zanganeh B,Rastegar T,Habibi Roudkenar M, et al. Co-culture of spermatogonial stem cells with sertoli cells in the presence of testosterone and FSH improved differentiation via up-regulation of post meiotic genes[J]. Acta Med Iran, 2013, 51(1):1-11.
22
Zhou Q,Wang M,Yuan Y, et al. Complete meiosis from embryonic stem Cell-Derived germ cells in vitro[J]. Cell Stem Cell, 2016, 18(3):330-340.
23
Deng S,Wang X,Wang Z, et al. In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat[J]. Theriogenology, 2017, 90:120-128.
24
Cooke PS,Nanjappa MK. How to make a human germ cell[J]. Asian J Androl, 2015, 17(3):441-442.
25
Hara K,Nakagawa T,Enomoto H, et al. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states[J]. Cell Stem Cell, 2014, 14(5):658-672.
26
Aiyama Y,Tsunekawa N,Kishi K, et al. A niche for GFRα1-Positive spermatogonia in the terminal segments of the seminiferous tubules in hamster testes[J]. Stem Cells, 2015, 33(9):2811-2824.
27
Meng X,Lindahl M,Hyvönen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J]. Science, 2000, 287(5457):1489-1493.
28
Kubota H,Wu X,Goodyear SM, et al. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties[J]. FASEB J, 2011, 25(8):2604-2614.
29
Boozarpour S,Matin MM,Momeni-Moghaddam M, et al. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells[J]. Tissue Cell, 2016, 48(3):235-241.
30
Chen LY,Willis WD,Eddy EM. Targeting the Gdnf gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development[J]. Proc Natl Acad Sci U S A, 2016, 113(7):1829-1834.
31
Chen SR,Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling[J]. Reproduction, 2015, 149(4):R159-R167.
32
Endo T,Romer KA,Anderson EL, et al. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis[J]. Proc Natl Acad Sci U S A, 2015, 112(18):E2347-E2356.
33
Teletin M,Vernet N,Ghyselinck NB, et al. Roles of retinoic acid in germ cell differentiation[J]. Curr Top Dev Biol, 2017, 125:191-225.
34
Bowles J,Knight D,Smith C, et al. Retinoid signaling determines germ cell fate in mice[J]. Science, 2006, 312(5773):596-600.
35
Bowles J,Koopman P. Retinoic acid, meiosis and germ cell fate in mammals[J]. Development, 2007, 134(19):3401-3411.
36
Dong WZ,Hua JL,Shen WZ, et al. In vitro production of haploid sperm cells from male germ cells of foetal cattle[J]. Anim Reprod Sci, 2010, 118(2/4):103-109.
37
Wang P,Suo LJ,Shang H, et al. Differentiation of spermatogonial stem cell-like cells from murine testicular tissue into haploid male germ cells in vitro[J]. Cytotechnology, 2014, 66(3):365-372.
38
Wang S,Wang X,Ma L, et al. Retinoic acid is sufficient for the in vitro induction of mouse spermatocytes[J]. Stem Cell Reports, 2016, 7(1):80-94.
39
Yang S,Ping P,Ma M, et al. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients[J]. Stem Cell Reports, 2014, 3(4):663-675.
40
Shah SM,Singla SK,Palta P, et al. Retinoic acid induces differentiation of buffalo(Bubalus bubalis)embryonic stem cells into germ cells[J]. Gene, 2017, 626:358-366.
Shah SM,Singla SK,Palta P, et al. Retinoic acid induces differentiation of buffalo(Bubalus bubalis)embryonic stem cells into germ cells[J]. Gene, 2017, 631:54-67.
41
Ohnuki M,Tanabe K,Sutou K, et al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential[J]. Proc Natl Acad Sci U S A, 2014, 111(34):12426-12431.
42
Irie N,Weinberger L,Tang WW, et al. SOX17 is a critical specifier of human primordial germ cell fate[J]. Cell, 2015, 160(1/2):253-268.
43
Tang WW,Dietmann S,Irie N, et al. A unique gene regulatory network resets the human germline epigenome for development[J]. Cell, 2015, 161(6):1453-1467.
44
Li P,Hu H,Yang S, et al. Differentiation of induced pluripotent stem cells into male germ cells in vitro through embryoid body formation and retinoic acid or testosterone induction[J]. Biomed Res Int, 2013, 2013(10):608728.
45
Dong G,Shang Z,Liu L, et al. Retinoic acid combined with spermatogonial stem cell conditions facilitate the Generation of mouse germ-like cells[J]. Biosci Rep, 2017, 37(2):1-10.
46
Eguizabal C,Montserrat N,Vassena R, et al. Complete meiosis from human induced pluripotent stem cells[J]. Stem Cells, 2011, 29(8):1186-1195.
47
Easley CA,Phillips BT,Mcguire MM, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells[J]. Cell Rep, 2012, 2(3):440-446.
48
Lim JJ,Shim MS,Lee JE, et al. Three-step method for proliferation and differentiation of human embryonic stem cell (hESC)-derived male germ cells[J]. PLoS One, 2014, 9(4):e90454.
[1] 李勇, 全勇, 傅仕艳, 冉新泽, 唐红, 柳随义, 李杰, 舒畅, 陈用来, 张静, 杨冰冰, 郝玉徽. 低氧环境对小鼠急性放射损伤的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 299-305.
[2] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[3] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[4] 江振剑, 蒋明, 黄大莉. 基于决策曲线分析血清E-cad、HIF-1α预测乳腺癌改良根治术治疗预后的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 272-275.
[5] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[6] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[7] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[8] 武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.
[9] 高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 314-318.
[10] 柯敏霞, 杨黄恬. 心肌微组织的构建及其在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 224-229.
[11] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[12] 王星月, 舒亮辉, 朝亚. 罗沙司他在炎症反应中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(02): 101-104.
[13] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[14] 王志文, 王长峰, 王海江. 肉桂醛经HIF-1α抑制肿瘤的研究进展及展望[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 247-251.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要