切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 176 -181. doi: 10.3877/cma.j.issn.2095-1221.2018.03.010

所属专题: 文献

综述

线粒体代谢与干细胞的命运决定
马明慧1, 马悦佼1, 孙婕1, 张海燕1,()   
  1. 1. 100069 北京,首都医科大学基础医学院2014级基础医学班专业;细胞生物学系
  • 收稿日期:2017-11-26 出版日期:2018-06-01
  • 通信作者: 张海燕
  • 基金资助:
    国家自然科学基金(81770616); 北京市自然基金(5172009); 首都医科大学本科生科技创新项目(XSKY2017)

Mitochondrial metabolism and stem cells fate

Minghui Ma1, Yuejiao Ma1, Jie Sun1, Haiyan Zhang1,()   

  1. 1. Grade 2014 for basic medical sciences, School of Basic Medical Science, Capital Medical University, Department of Cell Biology, Capital Medical University, Beijing 100069, China
  • Received:2017-11-26 Published:2018-06-01
  • Corresponding author: Haiyan Zhang
  • About author:
    Corresponding author: Zhang Haiyan, Email:
引用本文:

马明慧, 马悦佼, 孙婕, 张海燕. 线粒体代谢与干细胞的命运决定[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 176-181.

Minghui Ma, Yuejiao Ma, Jie Sun, Haiyan Zhang. Mitochondrial metabolism and stem cells fate[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 176-181.

线粒体在真核细胞多种生物学过程中扮演重要角色,如能量产生、钙平衡、细胞内物质代谢、活性氧产生、细胞信号传导和凋亡等。线粒体的高度动态性,如生物发生、动态融合、分裂和退化等代谢特征与细胞种类、组织的需求密切相关。干细胞是一类具有自我更新和多向分化潜能的细胞。目前研究表明,线粒体的代谢与干细胞发育、命运决定紧密相关。本文综述干细胞干性维持及定向分化过程中,线粒体代谢改变与线粒体形态、结构和功能变化。

Mitochondria play fundamental roles in multiple processes in eukaryotic cells, including energy production, calcium homeostasis, intermediate metabolism, endogenous reactive oxygen species production, cell signaling, and apoptosis. In order to meet different demands of cell types and tissues, cells modulate mitochondrial function through biogenesis, degradation, dynamic fusion and fission events. Stem cells are defined by two key properties: self-renew and pluripotency. Studied show that the metabolism of mitochondria is closely related to the fate decision and the development of stem cells. Here, we review mitochondrial morphology, structure, function, and metabolic changes in the process of maintaining pluripotency of stem cells, and in the process of directed differentiation.

图1 多能干细胞与成体细胞线粒体能量产生过程比较[8]
表1 细胞类型与线粒体形态和代谢方式差异
14
Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells[J]. Proc Natl Acad Sci U S A, 2005, 102(13):4783-4788.
15
Chung S, Arrell DK, Faustino RS, et al. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation[J]. J Mol Cell Cardiol, 2010, 48(4):725-734.
16
Suhr ST, Chang AE, Tjong J, et al. Mitochondrial rejuvenation after induced pluripotency[J]. PLoS One, 2010, 5(11):e14095.
17
Chan HY, Keung W, Li RA, et al. Morphometric analysis of human embryonic stem Cell-Derived ventricular cardiomyocytes: determining the maturation state of a population by quantifying parameters in individual cells[J]. Stem Cells Int, 2015:586908.
18
Zhu L, Gomez-Duran A, Saretzki G, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages[J]. J Cell Biol, 2016, 215(2):187-202.
19
Marycz K, Michalak I, Kocherova I, et al. The cladophora glomerata enriched by biosorption process in Cr(Ⅲ) improves viability, and reduces oxidative stress and apoptosis in equine metabolic syndrome derived adipose mesenchymal stromal stem cells (ASCs) and their extracellular vesicles (MV's)[J]. Mar Drugs, 2017, 15(12).pii: E385.
20
Das S, Hajnóczky N, Antony AN, et al. Mitochondrial morphology and dynamics in hepatocytes from normal and ethanol-fed rats[J]. Pflugers Arch, 2012, 464(1):101-109.
21
Bahitham W, Liao XP, Peng F, et al. Mitochondriome and cholangiocellular carcinoma[J]. PLoS One, 2014, 9(8):e104694.
22
Rodriguez-Enriquez S, Kai Y, Maldonado EA, et al. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes[J]. Autophagy, 2009, 5(8):1099-1106.
23
方海琴,李利忠,赵增明, 等. T-2毒素对小鼠胚胎干细胞线粒体功能的抑制作用[J]. 中国药理学与毒理学杂志, 2014, 28(3):415-420.
24
Huang P, Yc C, Chen LH, et al. PGC-1α mediates differentiation of mesenchymal stem cells to brown adipose cells[J]. J Atheroscler Thromb, 2011, 18(11):966-980.
25
Nazem S, Rabiee F, Ghaedi K, et al. Fndc5 knockdown induced suppression of mitochondrial integrity and significantly decreased cardiac differentiation of mouse embryonic stem cells[J]. J Cell Biochem, 2018, 119(6):4528-4539.
26
Zhang Y, Marsboom G, Toth PT, et al. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells[J]. PLoS One, 2013, 8(10):e77077.
27
Zhang Y, Cui P, Li Y, et al. Mitochondrially produced ATP affects stem cell pluripotency via ActI6a-mediated histone acetylation[J]. FASEB J, 2018, 32(4):1891-1902.
28
Fortini P, Iorio E, Dogliotti E, et al. Coordinated metabolic changes and modulation of autophagy during myogenesis[J]. Front Physiol, 2016, 7:237.
29
Zhang J, Khvorostov I, Hong JS, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells[J]. EMBO J. 2016, 35(8):899.
30
Pereira SL, Grãos M, Rodrigues AS, et al. Inhibition of mitochondrial complex Ⅲ blocks neuronal differentiation and maintains embryonic stem cell pluripotency[J]. PLoS One, 2013, 8(12):e82095.
31
Zhou W, Choi M, Margineantu D, et al. HIF1α induced Switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition[J]. EMBO J, 2012, 31(9):2103-2116.
32
Kaewsuwan S, Plubrukarn A, Utsintong M, et al. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells[J]. Mol Med Rep, 2016, 13(3):2078-2086.
33
卢婉. MicroRNA-27通过靶向于抗增殖蛋白抑制脂肪干细胞分化及线粒体功能[D]. 南昌: 南昌大学医学院 南昌大学, 2014.
34
Hom JR, Quintanilla RA, Hoffman DL, et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation[J]. Dev Cell. 2011, 21(3):469-478.
35
Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update[J]. EMBO J, 2015, 34(2):138-153.
36
Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics[J]. J Biochem, 2011, 149(3):241-251.
37
Westermann B. Mitochondrial fusion and fission in cell Life and death[J]. Nat Rev Mol Cell Biol, 2010, 11(12):872-884.
38
郝希纯,王东明. Drp1蛋白调节线粒体分裂机制及其在疾病中的作用[J]. 广东医学, 2011, 32(8):1066-1069.
39
Hoque A, Sivakumaran P, Bond ST, et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells[J]. Cell Death Discov, 2018, 5:4:39.
40
Wang L, Ye XY, Zhao Q, et al. Drp1 is dispensable for mitochondria biogenesis in induction to pluripotency but required for differentiation of embryonic stem cells[J]. Stem Cells Dev, 2014, 23(20):2422-2434.
41
Son MY, Choi H, Han YM, et al. Unveiling the critical role of Rex1 in the regulation of human stem cell pluripotency[J]. Stem Cells, 2013, 31(11):2374-2387.
42
Joshi B, Ko D, Ordonez-Ercan D, et al. A putative coiled-coil domain of prohibitin is sufficient to repress E2F1-mediated transcription and induce apoptosis[J]. Biochem Biophys Res Commun, 2003, 312(2):459-466.
43
Kowno M, Watanabe-Susaki K, Ishimine H, et al. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria[J]. PLoS One, 2014, 9(4):e81552.
1
李金泰,蓝升,刘毅. 3D打印干细胞技术用于组织器官重建的现状与思考[J]. 器官移植, 2017 (4):267-270.
2
Xu XL, Duan SL, Yi F, et al. Mitochondrial regulation in pluripotent stem cells[J]. Cell Metab, 2013, 18(3):325-332.
3
Mandal S, Lindgren AG, Srivastava AS, et al. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells[J]. Stem Cells, 2011, 29(3):486-495.
4
Prigione A, Fauler B, Lurz R, et al. The Senescence-Related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells[J]. Stem Cells, 2010, 28(4):721-733.
5
Varum S, Rodrigues AS, Moura MB, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts[J]. PLoS One, 2011, 6(6):e20914.
6
Prowse AB, Chong F, Elliott DA, et al. Analysis of mitochondrial function and localisation during human embryonic stem cell differentiation in vitro[J]. PLoS One, 2012, 7(12):e52214.
7
Lonergan T, Bavister B, Brenner C. Mitochondria in stem cells[J]. Mitochondrion, 2007, 7(5):289-296.
8
Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation[J]. Biochem Soc Trans, 2003, 31(6):1143-1151.
9
Wanet A, Arnould T, Najimi M, et al. Connecting mitochondria, metabolism, and stem cell fate[J]. Stem Cells Dev, 2015, 24(17):1957-1971.
44
Zhang XR, Zuo XX, Yang B, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation[J]. Cell, 2014, 158(3):607-619.
10
Hoque A, Sivakumaran P, Bond ST, et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells[J]. Cell Death Discov, 2018, 4:39.
11
Pereira SL, Rodrigues AS, Sousa MI, et al. From gametogenesis and stem cells to cancer: common metabolic themes[J]. Hum Reprod Update, 2014, 20(6):924-943.
12
Wu JF, Niu J, Li X, et al. TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production[J]. BMC Dev Biol, 2014, 14:21.
13
Heo JY, Jing K, Song KS, et al. Downregulation of APE1/Ref-1 is involved in the senescence of mesenchymal stem cells[J]. Stem Cells, 2009, 27(6):1455-1462.
[1] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[4] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[5] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[11] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[12] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[13] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[14] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[15] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
阅读次数
全文


摘要