切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 172 -175. doi: 10.3877/cma.j.issn.2095-1221.2018.03.009

所属专题: 文献

综述

磷脂酶D1信号对神经干细胞向神经分化的重要影响
张金梅1, 杨远荣1,()   
  1. 1. 434020 华中科技大学同济医学院附属荆州医院药学部
  • 收稿日期:2017-11-30 出版日期:2018-06-01
  • 通信作者: 杨远荣
  • 基金资助:
    荆州市科技局项目(2016097)

Significant effect of phospholipase D1 signal in neuron differentiation of neural stem cell

Jinmei Zhang1, Yuanrong Yang1,()   

  1. 1. Department of Pharmacy in Jingzhou Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Jingzhou 434020, China
  • Received:2017-11-30 Published:2018-06-01
  • Corresponding author: Yuanrong Yang
  • About author:
    Corresponding author: Yang Yuanrong, Email:
引用本文:

张金梅, 杨远荣. 磷脂酶D1信号对神经干细胞向神经分化的重要影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 172-175.

Jinmei Zhang, Yuanrong Yang. Significant effect of phospholipase D1 signal in neuron differentiation of neural stem cell[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 172-175.

磷脂酶D1(PLD1)在细胞生长、存活、分化、膜转运和细胞骨架组织等多种功能的调控中发挥重要作用。近年来研究发现,PLD1在神经干细胞(NSCs)向神经元的分化中也起关键作用。PLD1参与多种信号通路如Rho家族GTP酶和Ca2+信号通路的调节,影响轴突生长、突触发育及其可塑性。因此,PLD1作为神经系统中一种重要的信号分子引起了广泛的关注。本文综述了PLD1的结构、功能、作用机制及其在NSCs向神经分化中的调控作用,对深入研究NSCs的分化和神经元的再生有重要的指导意义。

Phospholipase D1 (PLD1) plays crucial roles in regulating multiple cell functions, including cell growth, survival, differentiation, membrane trafficking and cytoskeletal organization. Recent studies suggest that PLD1 also plays key roles in the regulation of neuronal differentiation of neural stem cells (NSCs). PLD1 is involved in the regulation of Rho family GTPases and Ca2+ dependent signaling pathways, which affect axon growth, synaptic development and plasticity. Thus, PLD1 has now attracted much attention as an essential neuronal signaling molecule in nervous system. In this review, we summarize the structure and function of PLD1 as well as its control in neuronal differentiation of NSCs and mechanisms. It is of great significance to shed light on the further study the differentiation of NSCs and neural regeneration

1
Miller FD, Gauthier AS. Timing is everything: making neurons versus glia in the developing cortex[J]. Neuron, 2007, 54(3):357-369.
2
Xu W, Lakshman N, Morshead CM. Building a central nervous system: The neural stem cell lineage revealed[J]. Neurogenesis (Austin), 2017, 4(1):e1300037.
3
Paspala SA, Murthy TV, Mahaboob VS, et al. Pluripotent stem cells - a review of the current status in neural regeneration[J]. Neurol India, 2011, 59(4):558-565.
4
Kanaho Y, Funakoshi Y, Hasegawa H. Phospholipase D signalling and its involvement in neurite outgrowth[J]. Biochim Biophys Acta, 2009, 1791(9):898-904.
5
Jenkins GM, Frohman MA. Phospholipase D: a lipid centric review[J]. Cell Mol Life Sci, 2005, 62(19/20):2305-2316.
6
Xu Y, Seet LF, Hanson B, et al. The Phox homology (PX) domain, a new player in phosphoinositide signalling[J]. Biochem J, 2001, 360(Pt 3):513-530.
7
Bae EJ, Lee HJ, Jang YH, et al. Phospholipase D1 regulates autophagic flux and clearance of α-synuclein aggregates[J]. Cell Death Differ, 2014, 21(7):1132-1141.
8
Brown HA, Thomas PG, Lindsley CW. Targeting phospholipase D in cancer, infection and neurodegenerative disorders[J]. Nat Rev Drug Discov, 2017, 16(5):351-367.
9
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer[J]. Pharmacol Rev, 2014, 66(4):1033-1079.
10
Eftekharian MM, Azimi T, Ghafouri-Fard S, et al. Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients[J]. Neurol Sci, 2017, 38(5):865-872.
11
Brito de Souza L, Pinto da Silva LL, Jamur MC, et al. Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells[J]. PLoS One, 2014, 9(3):e91868.
12
Luo LD, Li G, Wang Y. PLD1 promotes dendritic spine development by inhibiting Adam10-mediated N-cadherin cleavage[J]. Sci Rep, 2017, 7(1):6035.
13
Park SY, Ma W, Yoon SN, et al. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells[J]. Mol Neurobiol, 2015, 51(3):1089-1102.
14
Park SY, Yoon SN, Kang MJ, et al. Hippocalcin promotes neuronal differentiation and inhibits astrocytic differentiation in neural stem cells[J]. Stem Cell Reports, 2017, 8(1):95-111.
15
Kang MJ, Park SY, Han JS. Hippocalcin is required for astrocytic differentiation through activation of Stat3 in hippocampal neural precursor cells[J]. Front Mol Neurosci, 2016, 9:110.
16
Liu W, Yue W, Wu R. Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon[J]. Stem Cell Res Ther, 2013, 4(1):7.
17
Yoon SN, Kim KS, Cho JH, et al. Phospholipase D1 mediates bFGF-induced Bcl-2 expression leading to neurite outgrowth in H19-7 cells[J]. Biochem J, 2012, 441(1):407-416.
18
Trouillas M, Saucourt C, Duval D, et al. Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells[J]. Cell Death Differ, 2008, 15(9):1450-1459.
19
Lee SI, Kim BG, Hwang DH, et al. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury[J]. J Neurosci Res, 2009, 87(14):3186-3197.
20
Cho JH, Oh DY, Kim HJ, et al. The TSP motif in AP180 inhibits phospholipase D1 activity resulting in increased efficacy of anticancer drug via its direct binding to carboxyl terminal of phospholipase D1[J]. Cancer Lett, 2011, 302(2):144-154.
21
Choi HJ, Han JS. Overexpression of phospholipase D enhances Bcl-2 expression by activating STAT3 through Independent activation of ERK and p38MAPK in HeLa cells[J]. Biochim Biophys Acta, 2012, 1823(6):1082-1091.
22
Ammar MR, Humeau Y, Hanauer A, et al. The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid[J]. J Neurosci, 2013, 33(50):19470-19479.
23
Cai D, Zhong M, Wang R, et al. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer's disease-linked presenilin-1 mutant neurons[J]. Proc Natl Acad Sci U S A, 2006, 103(6):1936-1940.
24
Yoon MS, Yon C, Park SY, et al. Role of phospholipase D1 in neurite outgrowth of neural stem cells[J]. Biochem Biophys Res Commun, 2005, 329(3):804-811.
25
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology[J]. Front Neuroanat, 2014, 8:78.
26
Huang GH, Sun ZL, Li HJ, et al. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases[J]. Mol Cell Neurosci, 2017, 80:18-31.
27
Rudge SA, Wakelam MJ. Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton[J]. Biochim Biophys Acta, 2009, 1791(9):856-861.
28
Yoon MS, Cho CH, Lee KS, et al. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells[J]. Biochem Biophys Res Commun, 2006, 347(3):594-600.
29
Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by Calcium signaling[J]. Cell Calcium, 2016, 59(2/3):124-134.
30
Zheng JQ, Poo MM. Calcium signaling in neuronal motility[J]. Annu Rev Cell Dev Biol, 2007, 23:375-404.
31
Boncoeur E, Bouvet GF, Migneault FA, et al. Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKC alpha-beta 1 in alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(2):L175-L184.
32
Kopach O, Viatchenko-Karpinski V, Atianjoh FE, et al. PKCα is required for inflammation-induced trafficking of extrasynaptic AMPA receptors in tonically firing laminaⅡdorsal Horn neurons during the maintenance of persistent inflammatory pain[J]. J Pain, 2013, 14(2):182-192.
33
Zhao C, Du G, Skowronek K, et al. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos[J]. Nat Cell Biol, 2007, 9(6):706-712.
34
Oh DY, Cho JH, Park SY, et al. A novel role of hippocalcin in bFGF-induced neurite outgrowth of H19-7 cells[J]. J Neurosci Res, 2008, 86(7):1557-1565.
35
Lundgren TK, Nakahata K, Fritz N, et al. RET PLCγ phosphotyrosine binding domain regulates Ca2+ signaling and neocortical neuronal migration[J]. PLoS One, 2012, 7(2):e31258.
[1] 张启龙, 柳亿, 卢会丽, 罗慧, 李成林, 王菁, 王辉. 奥妥珠单抗治疗磷脂酶A2受体相关膜性肾病的疗效与安全性:单中心回顾性分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 379-384.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[4] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[5] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[6] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[7] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[8] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[9] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[10] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[11] 麦麦提依明·托合提, 柳叶, 张诚, 阿卜杜喀迪尔·牙森, 高峰, 王继超, 吴永刚. PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 73-79.
[12] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[13] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[14] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[15] 欧春影, 李晓宾, 郭靖, 许可, 王梦, 安晓雷. hs-CRP、Lp-PLA2和S100β与缺血性脑小血管病患者认知障碍的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(03): 265-269.
阅读次数
全文


摘要