切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 172 -175. doi: 10.3877/cma.j.issn.2095-1221.2018.03.009

所属专题: 文献

综述

磷脂酶D1信号对神经干细胞向神经分化的重要影响
张金梅1, 杨远荣1,()   
  1. 1. 434020 华中科技大学同济医学院附属荆州医院药学部
  • 收稿日期:2017-11-30 出版日期:2018-06-01
  • 通信作者: 杨远荣
  • 基金资助:
    荆州市科技局项目(2016097)

Significant effect of phospholipase D1 signal in neuron differentiation of neural stem cell

Jinmei Zhang1, Yuanrong Yang1,()   

  1. 1. Department of Pharmacy in Jingzhou Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Jingzhou 434020, China
  • Received:2017-11-30 Published:2018-06-01
  • Corresponding author: Yuanrong Yang
  • About author:
    Corresponding author: Yang Yuanrong, Email:
引用本文:

张金梅, 杨远荣. 磷脂酶D1信号对神经干细胞向神经分化的重要影响[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 172-175.

Jinmei Zhang, Yuanrong Yang. Significant effect of phospholipase D1 signal in neuron differentiation of neural stem cell[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 172-175.

磷脂酶D1(PLD1)在细胞生长、存活、分化、膜转运和细胞骨架组织等多种功能的调控中发挥重要作用。近年来研究发现,PLD1在神经干细胞(NSCs)向神经元的分化中也起关键作用。PLD1参与多种信号通路如Rho家族GTP酶和Ca2+信号通路的调节,影响轴突生长、突触发育及其可塑性。因此,PLD1作为神经系统中一种重要的信号分子引起了广泛的关注。本文综述了PLD1的结构、功能、作用机制及其在NSCs向神经分化中的调控作用,对深入研究NSCs的分化和神经元的再生有重要的指导意义。

Phospholipase D1 (PLD1) plays crucial roles in regulating multiple cell functions, including cell growth, survival, differentiation, membrane trafficking and cytoskeletal organization. Recent studies suggest that PLD1 also plays key roles in the regulation of neuronal differentiation of neural stem cells (NSCs). PLD1 is involved in the regulation of Rho family GTPases and Ca2+ dependent signaling pathways, which affect axon growth, synaptic development and plasticity. Thus, PLD1 has now attracted much attention as an essential neuronal signaling molecule in nervous system. In this review, we summarize the structure and function of PLD1 as well as its control in neuronal differentiation of NSCs and mechanisms. It is of great significance to shed light on the further study the differentiation of NSCs and neural regeneration

1
Miller FD, Gauthier AS. Timing is everything: making neurons versus glia in the developing cortex[J]. Neuron, 2007, 54(3):357-369.
2
Xu W, Lakshman N, Morshead CM. Building a central nervous system: The neural stem cell lineage revealed[J]. Neurogenesis (Austin), 2017, 4(1):e1300037.
3
Paspala SA, Murthy TV, Mahaboob VS, et al. Pluripotent stem cells - a review of the current status in neural regeneration[J]. Neurol India, 2011, 59(4):558-565.
4
Kanaho Y, Funakoshi Y, Hasegawa H. Phospholipase D signalling and its involvement in neurite outgrowth[J]. Biochim Biophys Acta, 2009, 1791(9):898-904.
5
Jenkins GM, Frohman MA. Phospholipase D: a lipid centric review[J]. Cell Mol Life Sci, 2005, 62(19/20):2305-2316.
6
Xu Y, Seet LF, Hanson B, et al. The Phox homology (PX) domain, a new player in phosphoinositide signalling[J]. Biochem J, 2001, 360(Pt 3):513-530.
7
Bae EJ, Lee HJ, Jang YH, et al. Phospholipase D1 regulates autophagic flux and clearance of α-synuclein aggregates[J]. Cell Death Differ, 2014, 21(7):1132-1141.
8
Brown HA, Thomas PG, Lindsley CW. Targeting phospholipase D in cancer, infection and neurodegenerative disorders[J]. Nat Rev Drug Discov, 2017, 16(5):351-367.
9
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer[J]. Pharmacol Rev, 2014, 66(4):1033-1079.
10
Eftekharian MM, Azimi T, Ghafouri-Fard S, et al. Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients[J]. Neurol Sci, 2017, 38(5):865-872.
11
Brito de Souza L, Pinto da Silva LL, Jamur MC, et al. Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells[J]. PLoS One, 2014, 9(3):e91868.
12
Luo LD, Li G, Wang Y. PLD1 promotes dendritic spine development by inhibiting Adam10-mediated N-cadherin cleavage[J]. Sci Rep, 2017, 7(1):6035.
13
Park SY, Ma W, Yoon SN, et al. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells[J]. Mol Neurobiol, 2015, 51(3):1089-1102.
14
Park SY, Yoon SN, Kang MJ, et al. Hippocalcin promotes neuronal differentiation and inhibits astrocytic differentiation in neural stem cells[J]. Stem Cell Reports, 2017, 8(1):95-111.
15
Kang MJ, Park SY, Han JS. Hippocalcin is required for astrocytic differentiation through activation of Stat3 in hippocampal neural precursor cells[J]. Front Mol Neurosci, 2016, 9:110.
16
Liu W, Yue W, Wu R. Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon[J]. Stem Cell Res Ther, 2013, 4(1):7.
17
Yoon SN, Kim KS, Cho JH, et al. Phospholipase D1 mediates bFGF-induced Bcl-2 expression leading to neurite outgrowth in H19-7 cells[J]. Biochem J, 2012, 441(1):407-416.
18
Trouillas M, Saucourt C, Duval D, et al. Bcl2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells[J]. Cell Death Differ, 2008, 15(9):1450-1459.
19
Lee SI, Kim BG, Hwang DH, et al. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury[J]. J Neurosci Res, 2009, 87(14):3186-3197.
20
Cho JH, Oh DY, Kim HJ, et al. The TSP motif in AP180 inhibits phospholipase D1 activity resulting in increased efficacy of anticancer drug via its direct binding to carboxyl terminal of phospholipase D1[J]. Cancer Lett, 2011, 302(2):144-154.
21
Choi HJ, Han JS. Overexpression of phospholipase D enhances Bcl-2 expression by activating STAT3 through Independent activation of ERK and p38MAPK in HeLa cells[J]. Biochim Biophys Acta, 2012, 1823(6):1082-1091.
22
Ammar MR, Humeau Y, Hanauer A, et al. The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid[J]. J Neurosci, 2013, 33(50):19470-19479.
23
Cai D, Zhong M, Wang R, et al. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer's disease-linked presenilin-1 mutant neurons[J]. Proc Natl Acad Sci U S A, 2006, 103(6):1936-1940.
24
Yoon MS, Yon C, Park SY, et al. Role of phospholipase D1 in neurite outgrowth of neural stem cells[J]. Biochem Biophys Res Commun, 2005, 329(3):804-811.
25
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology[J]. Front Neuroanat, 2014, 8:78.
26
Huang GH, Sun ZL, Li HJ, et al. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases[J]. Mol Cell Neurosci, 2017, 80:18-31.
27
Rudge SA, Wakelam MJ. Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton[J]. Biochim Biophys Acta, 2009, 1791(9):856-861.
28
Yoon MS, Cho CH, Lee KS, et al. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells[J]. Biochem Biophys Res Commun, 2006, 347(3):594-600.
29
Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by Calcium signaling[J]. Cell Calcium, 2016, 59(2/3):124-134.
30
Zheng JQ, Poo MM. Calcium signaling in neuronal motility[J]. Annu Rev Cell Dev Biol, 2007, 23:375-404.
31
Boncoeur E, Bouvet GF, Migneault FA, et al. Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKC alpha-beta 1 in alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(2):L175-L184.
32
Kopach O, Viatchenko-Karpinski V, Atianjoh FE, et al. PKCα is required for inflammation-induced trafficking of extrasynaptic AMPA receptors in tonically firing laminaⅡdorsal Horn neurons during the maintenance of persistent inflammatory pain[J]. J Pain, 2013, 14(2):182-192.
33
Zhao C, Du G, Skowronek K, et al. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos[J]. Nat Cell Biol, 2007, 9(6):706-712.
34
Oh DY, Cho JH, Park SY, et al. A novel role of hippocalcin in bFGF-induced neurite outgrowth of H19-7 cells[J]. J Neurosci Res, 2008, 86(7):1557-1565.
35
Lundgren TK, Nakahata K, Fritz N, et al. RET PLCγ phosphotyrosine binding domain regulates Ca2+ signaling and neocortical neuronal migration[J]. PLoS One, 2012, 7(2):e31258.
[1] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[2] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[3] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[4] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[5] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[6] 黄军杰, 王烈, 赵虎, 夏印, 张再重. lncRNA作为ceRNA参与婴幼儿血管瘤发生发展机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 360-366.
[7] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[8] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[9] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[10] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[13] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[14] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要