1 |
Layton AT. Modeling transport and flow regulatory mechanisms of the kidney[J]. ISRN Biomath, 2012, 2012(2012):170594. doi: 10.5402/2012/170594.
|
2 |
Jansen K, Schuurmans CCL, Jansen J, et al. Hydrogel-based cell therapies for kidney regeneration: current trends in biofabrication and in vivo repair[J]. Curr Pharm Des, 2017, 23(26):3845-3857.
|
3 |
Jansen J, Fedecostante M, Wilmer MJ, et al. Biotechnological challenges of bioartificial kidney engineering[J]. Biotechnol Adv, 2014, 32(7):1317-1327.
|
4 |
Mota C, Camarero-Espinosa S, Baker MB, et al. Bioprinting: from tissue and organ development to in vitro models[J]. Chem Rev, 2020, 120(19):10547-10607.
|
5 |
Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges and outlook[J]. J Mater Chem B, 2023, 11(43):10263-10287.
|
6 |
Mittal R, Woo FW, Castro CS, et al. Organ-on-chip models: implications in drug discovery and clinical applications[J]. J Cell Physiol, 2019, 234(6):8352-80.
|
7 |
Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3d bioprinting: possibilities, challengesand future aspects[J]. Materials (Basel), 2018, 11(11):2199. doi: 10.3390/ma11112199.
|
8 |
Xu K, Han Y, Huang Y, et al. The application of 3d bioprinting in urological diseases[J]. Mater Today Bio, 2022, 16:100388. doi: 10.1016/j.mtbio.2022.100388.
|
9 |
Hu S, Yi Y, Ye C, et al. Advances in 3d printing techniques for cartilage regeneration of temporomandibular joint disc and mandibular condyle[J]. Int J Bioprint, 2023, 9(5):761. doi: 10.18063/ijb.761.
|
10 |
Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nat Mater, 2021, 20(2):260-271.
|
11 |
Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3d vascularized proximal tubule models[J]. Proc Natl Acad Sci U S A, 2019, 116(12):5399-5404.
|
12 |
Datta P, Barui A, Wu Y, et al. Essential steps in bioprinting: from pre-to post-bioprinting[J]. Biotechnol Adv, 2018, 36(5):1481-1504.
|
13 |
Graham AD, Olof SN, Burke MJ, et al. High-resolution patterned cellular constructs by droplet-based 3d printing[J]. Sci Rep, 2017, 7(1):7004. doi: 10.1038/s41598-017-06358-x.
|
14 |
Liang R, Gu Y, Wu Y, et al. Lithography-based 3d bioprinting and bioinks for bone repair and regeneration[J]. ACS Biomater Sci Eng, 2021, 7(3):806-816.
|
15 |
Gao J, Liu X, Cheng J, et al. Application of photocrosslinkable hydrogels based on photolithography 3d bioprinting technology in bone tissue engineering[J]. Regen Biomater, 2023, 10:rbad037. doi: 10.1093/rb/rbad037.
|
16 |
Xu F, Ren H, Zheng M, et al. Development of biodegradable bioactive glass ceramics by dlp printed containing epcs/bmscs for bone tissue engineering of rabbit mandible defects[J]. J Mech Behav Biomed Mater, 2020, 103:103532. doi: 10.1016/j.jmbbm.2019.103532.
|
17 |
Ma X, Yu C, Wang P, et al. Rapid 3d bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture[J]. Biomaterials, 2018, 185:310-321.
|
18 |
Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464.
|
19 |
Rosette KA, Lander SM, VanOpstall C, et al. Three-dimensional coculture provides an improved in vitro model for papillary renal cell carcinoma[J]. Am J Physiol Renal Physiol, 2021, 321(1):F33-F46.
|
20 |
Mota C, Camarero-Espinosa S, Baker MB, et al. Bioprinting: from tissue and organ development to in vitro models[J]. Chemical Reviews, 2020, 120(19):10547-10607.
|
21 |
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3d bioprinting technology[J]. Nano Converg, 2023, 10(1):52. doi: 10.1186/s40580-023-00402-5.
|
22 |
Gadre M, Kasturi M, Agarwal P, et al. Decellularization and their significance for tissue regeneration in the era of 3d bioprinting[J]. ACS Omega, 2024, 9(7):7375-7392.
|
23 |
Ali M, Pr AK, Yoo JJ, et al. A photo-crosslinkable kidney ecm-derived bioink accelerates renal tissue formation[J]. Adv Healthc Mater, 2019, 8(7):e1800992. doi: 10.1002/adhm.201800992.
|
24 |
Singh NK, Han W, Nam SA, et al. Three-dimensional cell-printing of advanced renal tubular tissue analogue[J]. Biomaterials, 2020, 232:119734. doi: 10.1016/j.biomaterials.2019.119734.
|
25 |
Homaeigohar S, Tsai TY, Young TH, et al. An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering[J]. Carbohydr Polym, 2019, 224:115112. doi: 10.1016/j.carbpol.2019.115112.
|
26 |
Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3d projection stereolithography[J]. Biomaterials, 2012, 33(15):3824-3834.
|
27 |
Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues[J]. Adv Mater, 2018, 30(43):e1706913. doi: 10.1002/adma.201706913.
|
28 |
Kim J H, Lee S, Kang SJ, et al. Establishment of three-dimensional bioprinted bladder cancer-on-a-chip with a microfluidic system using bacillus calmette-guérin[J]. Int J Mol Sci, 2021, 22(16):8887. doi: 10.3390/ijms22168887.
|
29 |
Kim MJ, Chi BH, Yoo JJ, et al. Structure establishment of three-dimensional (3d) cell culture printing model for bladder cancer[J]. PLoS One, 2019, 14(10):e0223689. doi: 10.1371/journal.pone.0223689.
|
30 |
Butler HM, Naseri E, MacDonald DS, et al. Investigation of rheology, printability, and biocompatibility of n,o-carboxymethyl chitosan and agarose bioinks for 3d bioprinting of neuron cells[J]. Materialia, 2021, 18:101169. doi: 10.1016/j.mtla.2021.101169.
|
31 |
Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering[J]. Carbohydrate Polymers, 2018, 187:66-84.
|
32 |
Tetsuka H, Shin SR. Materials and technical innovations in 3d printing in biomedical applications[J]. J Mater Chem B, 2020, 8(15):2930-2950.
|
33 |
Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters-towards 3d bioprinting revolution![J]. Int J Bioprint, 2018, 4(2):139. doi: 10.18063/IJB.v4i2.139.
|
34 |
Gao B, Yang Q, Zhao X, et al. 4D bioprinting for biomedical applications[J]. Trends in Biotechnology, 2016, 34(9):746-756.
|
35 |
Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective[J]. Composites Part B: Engineering, 2017, 110:442-458.
|
36 |
Mironov V, Drake C, Wen X. Research project: charleston bioengineered kidney project[J]. Biotechnol J, 2006, 1(9):903-905.
|
37 |
Kolesky DB, Homan KA, Skylar-Scott MA, et al. Three-dimensional bioprinting of thick vascularized tissues[J]. Proc Natl Acad Sci U S A, 2016, 113(12):3179-3184.
|
38 |
Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3d convoluted renal proximal tubules on perfusable chips[J]. Sci Rep, 2016, 6:34845. doi: 10.1038/srep34845.
|
39 |
Jung JW, Lee JS, Cho DW. Computer-aided multiple-head 3d printing system for printing of heterogeneous organ/tissue constructs[J]. Sci Rep, 2016, 6:21685. doi: 10.1038/srep21685.
|
40 |
Sämfors S, Karlsson K, Sundberg J, et al. Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure[J]. Biofabrication, 2019, 11(4):045010. doi: 10.1088/1758-5090/ab2b4f.
|
41 |
King SM, Higgins JW, Nino CR, et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing[J]. Front Physiol, 2017, 8:123. doi: 10.3389/fphys.2017.00123.
|
42 |
Kolesky DB, Homan KA, Skylar-Scott M, et al. In vitro human tissues via multi-material 3-D bioprinting[J]. Altern Lab Anim, 2018, 46(4):209-215.
|
43 |
Addario G, Djudjaj S, Farè S, et al. Microfluidic bioprinting towards a renal in vitro model[J]. Bioprinting, 2020, 20:e00108. doi: 10.3389/fphys.2022.1048738.
|
44 |
Czerniecki SM, Cruz NM, Harder JL, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping[J]. Cell Stem Cell, 2018, 22(6):929-40.e4.
|
45 |
Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3d bioprinting in organ transplantation[J]. Biomater Sci, 2024, 12(6):1425-1448.
|
46 |
Yu Y, Li X, Li Y, et al. Derivation and characterization of endothelial cells from porcine induced pluripotent stem cells[J]. Int J Mol Sci, 2022, 23(13):7029. doi: 10.3390/ijms23137029.
|
47 |
Alizadeh S, Mahboobi L, Nasiri M, et al. Decellularized placental sponge seeded with human mesenchymal stem cells improves deep skin wound healing in the animal model[J]. ACS Appl Bio Mater, 2024, 7(4):2140-2152.
|
48 |
Zhu W, Ma X, Gou M, et al. 3D printing of functional biomaterials for tissue engineering[J]. Curr Opin Biotechnol, 2016, 40:103-112.
|
49 |
Balakhovsky YM, Ostrovskiy AY, Khesuani YD. Emerging business models toward commercialization of bioprinting technology[C]. Cham: Springer International Publishing, 2017: 1-22.
|