[1] |
Karmodiya K, Krebs AR, Oulad-Abdelghani M, et al. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells[J]. BMC Genomics, 2012, 13:424.
|
[2] |
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors[J]. Eur J Med Chem, 2016, 121:451-483.
|
[3] |
Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy[J]. Cold Spring Harb Perspect Med, 2016, 6(10). pii: a026831.
|
[4] |
Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility[J]. Genes Dev, 2007, 21(14):1790-1802.
|
[5] |
Ceccacci E, Minucci S. Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia[J]. Br J Cancer, 2016, 114(6):605-611.
|
[6] |
Acampora D, Di Giovannantonio LG, Garofalo A, et al. Functional antagonism between OTX2 and NANOG specifies a spectrum of heterogeneous identities in embryonic stem cells[J]. Stem Cell Reports, 2017, 9(5):1642-1659.
|
[7] |
Turinetto V, Giachino C. Histone variants as emerging regulators of embryonic stem cell identity[J]. Epigenetics, 2015, 10(7):563-573.
|
[8] |
Karantzali E, Schulz H, Hummel O, et al. Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis[J]. Genome Biol, 2008, 9(4):R65.
|
[9] |
Ware CB, Wang L, Mecham BH, et al. Histone deacetylase inhibition elicits an evolutionarily conserved Self-Renewal program in embryonic stem cells[J]. Cell Stem Cell, 2009, 4(4):359-369.
|
[10] |
Shi GL, Gao FR, Jin Y. The regulatory role of histone deacetylase inhibitors in Fgf4 expression is dependent on the differentiation state of pluripotent stem cells[J]. J Cell Physiol, 2011, 226(12):3190-3196.
|
[11] |
Tie K, Wu M, Deng Y, et al. Histone hypo-acetylation of Sox9 mediates nicotine-induced weak cartilage repair by suppressing BMSC chondrogenic differentiation[J]. Stem Cell Res Ther, 2018, 9(1):98.
|
[12] |
Bradley EW, Carpio LR, Van Wijnen AJ, et al. Histone deacetylases in bone development and skeletal disorders[J]. Physiol Rev, 2015, 95(4):1359-1381.
|
[13] |
Xu S, De Veirman K, Evans H, et al. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo[J]. Acta Pharmacol Sin, 2013, 34(5):699-709.
|
[14] |
Adamik J, Jin S, Sun Q, et al. EZH2 or HDAC1 inhibition reverses multiple myeloma-induced epigenetic suppression of osteoblast differentiation[J]. Mol Cancer Res, 2017, 15(4):405-417.
|
[15] |
Hu XQ, Zhang X, Dai LH, et al. Histone deacetylase inhibitor trichostatin a promotes the osteogenic differentiation of rat Adipose-Derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP Signaling-Dependent manner[J]. Stem Cells Dev, 2013, 22(2):248-255.
|
[16] |
Zhang L, Jin M, Margariti A, et al. Sp1-dependent activation of HDAC7 is required for platelet-derived growth Factor-BB-induced smooth muscle cell differentiation from stem cells[J]. J Biol Chem, 2010, 285(49):38463-38472.
|
[17] |
Tang Y, Boucher JM, Liaw L. Histone deacetylase activity selectively regulates notch-mediated smooth muscle differentiation in human vascular cells[J]. J Am Heart Assoc, 2012, 1(3):e000901.
|
[18] |
Foulquier S, Daskalopoulos EP, Lluri G, et al. WNT signaling in cardiac and vascular disease[J]. Pharmacol Rev, 2018, 70(1):68-141.
|
[19] |
Jun JY, Yang, Qian, et al. Histone deacetylases and cardiovascular cell lineage commitment[J]. World J Stem Cells, 2015, 7(5):852-858.
|
[20] |
Kawamura T, Ono K, Morimoto T, et al. Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes[J]. J Biol Chem, 2005, 280(20):19682-19688.
|
[21] |
Arcidiacono OA, Krejí J, Suchánková J, et al. Deacetylation of histone H4 accompanying cardiomyogenesis is weakened in HDAC1-depleted ES cells[J]. Int J Mol Sci, 2018, 19(8). pii: E2425.
|
[22] |
Ko S, Russell JO, Tian J, et al. Hdac1 regulates differentiation of bipotent liver progenitor cells during regeneration via Sox9b and Cdk8[J]. Gastroenterology, 2019, 156(1):187-202.e14.
|
[23] |
Noël ES, Casal-Sueiro A, Busch-Nentwich E, et al. Organ-specific requirements for Hdac1 in liver and pancreas formation[J]. Dev Biol, 2008, 322(2):237-250.
|
[24] |
Plaster N, Sonntag C, Schilling TF, et al. REREa/atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development[J]. Dev Dyn, 2007, 236(7):1891-1904.
|
[25] |
Raut A, Khanna A. Enhanced expression of hepatocyte-specific microRNAs in valproic acid mediated hepatic trans-differentiation of human umbilical cord derived mesenchymal stem cells[J]. Exp Cell Res, 2016, 343(2):237-247.
|
[26] |
Ren M, Yan L, Shang CZ, et al. Effects of Sodium butyrate on the differentiation of pancreatic and hepatic progenitor cells from mouse embryonic stem cells[J]. J Cell Biochem, 2010, 109(1):236-244.
|
[27] |
Hsieh J, Zhao X. Genetics and epigenetics in adult neurogenesis[J]. Cold Spring Harb Perspect Biol, 2016, 8(6). pii: a018911.
|
[28] |
Katayama S, Morii A, Makanga JO, et al. HDAC8 regulates neural differentiation through embryoid body formation in P19 cells[J]. Biochem Biophys Res Commun, 2018, 498(1):45-51.
|
[29] |
Qiao YB, Wang R, Yang XF, et al. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation[J]. J Biol Chem, 2015, 290(4):2508-2520.
|
[30] |
Wilting RH, Yanover E, Heideman MR, et al. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis[J]. EMBO J, 2010, 29(15):2586-2597.
|
[31] |
Bug G, Gül H, Schwarz K, et al. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells[J]. Cancer Res, 2005, 65(7):2537-2541.
|
[32] |
Yamamura K, Ohishi K, Katayama N, et al. Pleiotropic role of histone deacetylases in the regulation of human adult erythropoiesis[J]. Br J Haematol, 2006, 135(2):242-253.
|
[33] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
[34] |
Huangfu D, Maehr R, Guo WJ, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds[J]. Nat Biotechnol, 2008, 26(7):795-797.
|
[35] |
Chen X, Zhai YY, Yu DH, et al. Valproic acid enhances iPSC induction from human bone Marrow-Derived cells through the suppression of Reprogramming-Induced senescence[J]. J Cell Physiol, 2016, 231(8):1719-1727.
|
[36] |
Saini M, Selokar NL, Revey T, et al. Trichostatin a alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro[J]. Theriogenology, 2014, 82(7):1036-1042.
|
[37] |
Mao J, Zhang Q, Deng W, et al. Epigenetic modifiers facilitate induction and pluripotency of porcine iPSCs[J]. Stem Cell Reports, 2017, 8(1):11-20.
|
[38] |
Huan Y, Zhu J, Huang B, et al. Trichostatin a rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs[J]. PLoS One, 2015, 10(5):e0126607.
|
[39] |
Jin JX, Lee S, Taweechaipaisankul A, et al. The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos[J]. Cell Physiol Biochem, 2017, 41(3):1255-1266.
|
[40] |
Song YR, Hai T, Wang Y, et al. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor-m-carboxycinnamic acid bishydroxamide (CBHA)[J]. Protein Cell, 2014, 5(5):382-393.
|
[41] |
Zviran A, Mor N, Rais Y, et al. Deterministic somatic cell reprogramming involves continuous transcriptional changes governed by Myc and epigenetic-driven modules[J]. Cell Stem Cell, 2019, 24(2):328-341.e9.
|
[42] |
Xu W, Li Z, Yu B, et al. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer[J]. PLoS One, 2013, 8(5):e64705.
|
[43] |
Liao HF, Mo CF, Wu SC, et al. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency[J]. Reproduction, 2015, 150(4):245-256.
|
[44] |
Liu Z, Cai Y, Wang Y, et al. Cloning of macaque monkeys by somatic cell nuclear transfer[J]. Cell, 2018, 172(4):881-887.
|