[1] |
Liu H,F Zhu,J Yong, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3(6):587-590.
|
[2] |
Chen Y,Y Niu,Y Li, et al. Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells[J]. Cell Stem Cell, 2015, 17(1):116-124.
|
[3] |
Chédin F. The DNMT3 family of mammalian de novo DNA methyltransferases[J]. Prog Mol Biol Transl Sci, 2011, 101:255-285.
|
[4] |
Jackson M,A Krassowska,N Gilbert, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells[J]. Mol Cell Biol, 2004, 24(20):8862-8871.
|
[5] |
Feng J,H Chang,E Li, et al. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system[J]. J Neurosci Res, 2005, 79(6):734-746.
|
[6] |
Zhang L,C Gu,L Yang, et al. The sequence preference of DNA methylation variation in mammalians[J]. PLoS One, 2017, 12(10): e0186559.
|
[7] |
Weber M,I Hellmann,MB Stadler, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome[J]. Nat Genet, 2007, 39(4):457-466.
|
[8] |
Ziller MJ,F Muller,J Liao, et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types[J]. PLoS Genet, 2011, 7(12):e1002389.
|
[9] |
Lea AJ,CM Vockley,RA Johnston, et al. Genome-wide quantification of the effects of DNA methylation on human gene regulation[J]. Elife, 2018, 7.
|
[10] |
Brunner AL,DS Johnson,SW Kim, et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver[J]. Genome Res, 2009, 19(6):1044-1056.
|
[11] |
Zawada AM,JS Schneider,AI Michel, et al. DNA methylation profiling reveals differences in the 3 human monocyte subsets and identifies uremia to induce DNA methylation changes during differentiation[J]. Epigenetics, 2016, 11(4):259-272.
|
[12] |
Gkountela S,KX Zhang,TA Shafiq, et al. DNA Demethylation Dynamics in the Human Prenatal Germline[J]. Cell, 2015, 161(6):1425-1436.
|
[13] |
Guo H,P Zhu,L Yan, et al. The DNA methylation landscape of human early embryos[J]. Nature, 2014, 511(7511):606-610.
|
[14] |
Pastor WA,D Chen,W Liu, et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory[J]. Cell Stem Cell, 2016, 18(3):323-329.
|
[15] |
Liao J,R Karnik,H Gu, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells[J]. Nat Genet, 2015, 47(5):469-478.
|
[16] |
Tajima S,I Suetake,K Takeshita, et al. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases[J]. Adv Exp Med Biol, 2016, 945:63-86.
|
[17] |
Lee HJ,Hore TA,Reik W. Reprogramming the methylome:erasing memory and creating diversity[J]. Cell Stem Cell, 2014, 14(6):710-719.
|
[18] |
Fouse SD,Y Shen,M Pellegrini, et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation[J]. Cell Stem Cell, 2008, 2(2):160-169.
|
[19] |
Sendzikaite G,CW Hanna,KR Stewart-Morgan, et al. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice[J]. Nat Commun, 2019, 10(1):1884.
|
[20] |
Zhang D,X An,Z Li, et al. Role of gene promoter methylation regulated by TETs and DNMTs in the overexpression of HLA-G in MCF-7 cells[J]. Exp Ther Med, 2019, 17(6):4709-4714.
|
[21] |
Wang K,Y Chen,EA Chang, et al. Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells[J]. Cloning Stem Cells, 2009, 11(4):483-496.
|
[22] |
Li JY,MT Pu,R Hirasawa, et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog[J]. Mol Cell Biol, 2007, 27(24):8748-8759.
|
[23] |
Tomikawa J,K Fukatsu,S Tanaka, et al. DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage[J]. J Biol Chem, 2006, 281(17):12163-12169.
|
[24] |
Dan J,Chen T. Genetic studies on mammalian DNA methyltransferases [J]. Adv Exp Med Biol, 2016, 945:123-150.
|
[25] |
Gurdon JB. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation[J]. Annu Rev Cell Dev Biol, 2006, 22:1-22.
|
[26] |
Takahashi K,Tanabe K,Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
[27] |
Bao S,Tang F,Li X, et al. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells[J]. Nature, 2009, 461(7268):1292-1295.
|
[28] |
Rao J,Greber B. Conversion of epiblast stem cells to embryonic stem cells using growth factors and small molecule inhibitors[J]. Methods Mol Biol, 2014, 1150:215-226.
|
[29] |
Nichols J,Smith A. Naive and primed pluripotent states[J]. Cell Stem Cell, 2009, 4(6):487-492.
|
[30] |
Boroviak T,Nichols J. Primate embryogenesis predicts the hallmarks of human naive pluripotency[J]. Development, 2017, 144(2):175-186.
|
[31] |
Lee HJ,Hore TA,Reik W. Reprogramming the methylome: erasing memory and creating diversity[J]. Cell Stem Cell, 2014, 14(6):710-719.
|
[32] |
Ying QL,Wray J,Nichols J, et al. The ground state of embryonic stem cell self-renewal[J]. Nature, 2008, 453(7194):519-523.
|
[33] |
Ficz G,Hore TA,Santos F, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency[J]. Cell Stem Cell, 2013, 13(3):351-359.
|
[34] |
Habibi E,Brinkman AB,Arand J, et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells[J]. Cell Stem Cell, 2013, 13(3):360-369.
|
[35] |
Leitch HG,McEwen KR,Turp A, et al. Naive pluripotency is associated with global DNA hypomethylation[J]. Nat Struct Mol Biol, 2013, 20(3):311-316.
|
[36] |
Kiyonari H,Kaneko M,Abe S, et al. Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability[J]. Genesis, 2010, 48(5):317-327.
|
[37] |
Li P,Tong C,Mehrian-Shai R, et al. Germline competent embryonic stem cells derived from rat blastocysts[J]. Cell, 2008, 135(7):1299-1310.
|
[38] |
Nichols J,Jones K,Phillips JM, et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice[J]. Nat Med, 2009, 15(7):814-818.
|
[39] |
Mulas C,Kalkan T,von Meyenn F, et al. Defined conditions for propagation and manipulation of mouse embryonic stem cells[J]. Development, 2019, 146(6). pii: dev173146.
|
[40] |
Chan YS,Göke J,Ng JH, et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast[J]. Cell Stem Cell, 2013, 13(6):663-675.
|
[41] |
Takashima Y,Guo G,Loos R, et al. Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human[J]. Cell, 2015, 162(2):452-453.
|
[42] |
Theunissen TW,Powell BE,Wang H, et al. Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency[J]. Cell Stem Cell, 2014, 15(4):524-526.
|
[43] |
Warrier S,Popovic M,Van der Jeught M, et al. Establishment and Characterization of Naive Pluripotency in Human Embryonic Stem Cells[J]. Methods Mol Biol, 2016, 1516:13-46.
|
[44] |
Pastor WA,Chen D,Liu W, et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory[J]. Cell Stem Cell, 2016, 18(3):323-329.
|
[45] |
Inada E,Saitoh I,Kubota N, et al. Increased expression of cell surface SSEA-1 is closely associated with naive-like conversion from human deciduous teeth dental pulp cells-derived iPS cells[J]. Int J Mol Sci, 2019, 20(7). pii: E1651.
|
[46] |
Chan AW. Progress and prospects for genetic modification of nonhuman primate models in biomedical research[J]. ILAR J, 2013, 54(2):211-223.
|
[47] |
Gafni O,Weinberger L,Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature, 2013, 504(7479):282-286.
|
[48] |
Fang R,Liu K,Zhao Y, et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts[J]. Cell Stem Cell, 2014, 15(4):488-497.
|
[49] |
Takashima Y,Guo G,Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell, 2014, 158(6):1254-1269.
|
[50] |
Hanna J,Cheng AW,Saha K, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs[J]. Proc Natl Acad Sci U S A, 2010, 107(20):9222-9227.
|
[51] |
Ware CB,Nelson AM,Mecham B, et al. Derivation of naïve human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2014, 111(12):4484-4489.
|
[52] |
Kalkan T,Bornelöv S,Mulas C, et al. Complementary activity of ETV5, RBPJ, and TCF3 drives formative transition from naive pluripotency[J]. Cell Stem Cell, 2019, 24(5):785-801.e7.
|
[53] |
Dakhore S,Nayer B,Hasegawa K. Human pluripotent stem cell culture: current status, challenges, and advancement[J]. Stem Cells Int, 2018, 2018:7396905.
|
[54] |
Welling M,Geijsen N. Uncovering the true identity of naive pluripotent stem cells[J]. Trends Cell Biol, 2013, 23(9):442-448.
|
[55] |
De Carvalho DD,You JS,Jones PA. DNA methylation and cellular reprogramming[J]. Trends Cell Biol, 2010, 20(10):609-617.
|
[56] |
Laurent L,Wong E,Li G, et al. Dynamic changes in the human methylome during differentiation[J]. Genome Res, 2010, 20(3):320-331.
|
[57] |
Liu L,Luo GZ,Yang W, et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells[J]. J Biol Chem, 2010, 285(25):19483-19490.
|