1 |
Anderson JL, Morrow DA. Acute myocardial infarction[J]. N Engl J Med, 2017, 376(21):2053-2064.
|
2 |
Shah KS, Kittleson MM, Kobashigawa JA. Updates on heart transplantation[J]. Curr Heart Fail Rep, 2019, 16(5):150-156.
|
3 |
Frigerio M. Left ventricular assist device: indication, timing, and management[J]. Heart Fail Clin, 2021, 17(4):619-634.
|
4 |
Bolli R, Solankhi M, Tang XL, et al. Cell therapy in patients with heart failure: a comprehensive review and emerging concepts[J]. Cardiovasc Res, 2022, 118(4):951-976.
|
5 |
Zhu K, Wu Q, Ni C, et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates[J]. Circ Res, 2018, 122(7):958-969.
|
6 |
Li Q, Wang J, Wu Q, et al. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair[J]. Stem Cells Transl Med, 2020, 9(10):1121-1128.
|
7 |
Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism[J]. Dev Cell, 2022, 57(4):424-439.
|
8 |
Wu Q, Wang J, Tan WLW, et al. Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis[J]. Cell Death Dis, 2020, 11(5):354.
|
9 |
Patino-Guerrero A, Veldhuizen J, Zhu W, et al. Three-dimensional scaffold-free microtissues engineered for cardiac repair[J]. J Mater Chem B, 2020, 8(34):7571-7590.
|
10 |
Boheler KR, Meli AC, Yang HT. Special issue on recent progress with hPSC-derived cardiovascular cells for organoids, engineered myocardium, drug discovery, disease models, and therapy[J]. Pflugers Arch, 2021, 473(7):983-988.
|
11 |
Bergmann O, Zdunek S, Felker A, et al. Dynamics of cell generation and turnover in the human heart[J]. Cell, 2015, 161(7):1566-1575.
|
12 |
Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting cardiac cellular composition[J]. Circ Res, 2016, 118(3):400-409.
|
13 |
Cao N, Liang H, Huang J, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions[J]. Cell Res, 2013, 23(9):1119-1132.
|
14 |
Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes[J]. Nat Methods, 2014, 11(8):855-860.
|
15 |
Patsch C, Challet-Meylan L, Thoma EC, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells[J]. Nat Cell Biol, 2015, 17(8):994-1003.
|
16 |
Bao X, Lian X, Qian T, et al. Directed differentiation and long-term maintenance of epicardial cells derived from human pluripotent stem cells under fully defined conditions[J]. Nat Protoc, 2017, 12(9):1890-1900.
|
17 |
Luo XL, Zhang P, Liu X, et al. Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells[J]. Pflugers Arch, 2021, 473(7):991-1007.
|
18 |
Giacomelli E, Meraviglia V, Campostrini G, et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease[J]. Cell Stem Cell, 2020, 26(6):862-879.e11.
|
19 |
Campostrini G, Meraviglia V, Giacomelli E, et al. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells[J]. Nat Protoc, 2021, 16(4):2213-2256.
|
20 |
Liu Y, Zhang Y, Mei T, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment[J]. Adv Sci (Weinh), 2022, 9(9):e2104299. doi: 10.1002/advs.202104299.
|
21 |
Bargehr J, Ong LP, Colzani M, et al. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration[J]. Nat Biotechnol, 2019, 37(8):895-906.
|
22 |
Gao L, Gregorich ZR, Zhu W, et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine[J]. Circulation, 2018, 137(16):1712-1730.
|
23 |
Cho S, Lee C, Skylar-Scott MA, et al. Reconstructing the heart using iPSCs: engineering strategies and applications[J]. J Mol Cell Cardiol, 2021, 157:56-65.
|
24 |
Wendel JS, Ye L, Tao R, et al. Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model[J]. Stem Cells Transl Med, 2015, 4(11):1324-1332.
|
25 |
Querdel E, Reinsch M, Castro L, et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner[J]. Circulation, 2021, 143(20):1991-2006.
|
26 |
Kaiser NJ, Kant RJ, Minor AJ, et al. Optimizing blended collagen-fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes[J]. ACS Biomater Sci Eng, 2019, 5(2):887-899.
|
27 |
Riegler J, Tiburcy M, Ebert A, et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model[J]. Circ Res, 2015, 117(8):720-730.
|
28 |
Qin X, Riegler J, Tiburcy M, et al. Magnetic resonance imaging of cardiac strain pattern following transplantation of human tissue engineered heart muscles[J]. Circ Cardiovasc Imaging, 2016, 9(11):e004731. doi: 10.1161/CIRCIMAGING.116.004731.
|
29 |
Tsui JH, Ostrovsky-Snider NA, Yama DMP, et al. Conductive silk-polypyrrole composite scaffolds with bioinspirednanotopographic cues for cardiac tissue engineering[J]. J Mater Chem B, 2018, 6(44):7185-7196.
|
30 |
Liang Y, Mitriashkin A, Lim TT, et al. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering[J]. Biomaterials, 2021, 276:121008. doi: 10.1016/j.biomaterials.2021.121008.
|
31 |
Bouhrira N, Galie PA, Janmey PA. Hyaluronan disrupts cardiomyocyte organization within 3D fibrin-based hydrogels[J]. Biophys J, 2019, 116(7):1340-1347.
|
32 |
Saporito F, Sandri G, Bonferoni MC, et al. Electrospun gelatin(-)chondroitin sulfate scaffolds loaded with platelet lysate promote immature cardiomyocyte proliferation[J]. Polymers (Basel), 2018, 10(2):208. doi: 10.3390/polym10020208.
|
33 |
Chu X, Wang M, Qiu X, et al. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues[J]. J Biomed Mater Res A, 2022, 110(2):488-503.
|
34 |
Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes[J]. Sci Rep, 2018, 8(1):13532. doi: 10.1038/s41598-018-31848-x.
|
35 |
Chen Y, Wang J, Shen B, et al. Engineering a freestanding biomimetic cardiac patch using biodegradable poly (lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs)[J]. Macromol Biosci, 2015, 15(3):426-436.
|
36 |
Brazhkina O, Park JH, Park HJ, et al. Designing a 3D printing based auxetic cardiac patch with hiPSC-CMs for heart repair[J]. J Cardiovasc Dev Dis, 2021, 8(12):172. doi: 10.3390/jcdd8120172.
|
37 |
Wu Y, Wang L, Guo B, et al. Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy[J]. ACS Nano, 2017, 11(6):5646-5659.
|
38 |
Tan Y, Richards D, Xu R, et al. Silicon nanowire-induced maturation of cardiomyocytes derived from human induced pluripotent stem cells[J]. Nano Lett, 2015, 15(5):2765-2772.
|
39 |
Richards DJ, Tan Y, Coyle R, et al. Nanowires and electrical stimulation synergistically improve functions of hiPSC cardiac spheroids[J]. Nano Lett, 2016, 16(7):4670-4678.
|
40 |
Baei P, Hosseini M, Baharvand H, et al. Electrically conductive materials for in vitro cardiac microtissue engineering[J]. J Biomed Mater Res A, 2020, 108(5):1203-1213.
|
41 |
Campostrini G, Windt LM, van Meer BJ, et al. Cardiac tissues from stem cells: new routes to maturation and cardiac regeneration[J]. Circ Res, 2021, 128(6):775-801.
|
42 |
Yu D, Wang X, Ye L. Cardiac tissue engineering for the treatment of myocardial infarction[J]. J Cardiovasc Dev Dis, 2021, 8(11):153. doi: 10.3390/jcdd8110153.
|
43 |
Majid QA, Fricker ATR, Gregory DA, et al. Natural biomaterials for cardiac tissue engineering: a highly biocompatible solution[J]. Front Cardiovasc Med, 2020, 7:554597. doi: 10.3389/fcvm.2020.554597.
|
44 |
Sharma V, Dash SK, Govarthanan K, et al. Recent advances in cardiac tissue engineering for the management of myocardium infarction[J]. Cells, 2021, 10(10):2538. doi: 10.3390/cells10102538.
|
45 |
Esmaeili H, Patino-Guerrero A, Hasany M, et al. Electroconductive biomaterials for cardiac tissue engineering[J]. Acta Biomater, 2022, 139:118-140.
|
46 |
Li J, Hu S, Zhu D, et al. All roads lead to rome (the heart): cell retention and outcomes from various delivery routes of cell therapy products to the heart[J]. J Am Heart Assoc, 2021, 10(8):e020402. doi: 10.1161/JAHA.120.020402.
|
47 |
Tabei R, Kawaguchi S, Kanazawa H, et al. Development of a transplant injection device for optimal distribution and retention of human induced pluripotent stem cellderivedcardiomyocytes[J]. J Heart Lung Transplant, 2019, 38(2):203-214.
|
48 |
Kawaguchi S, Soma Y, Nakajima K, et al. Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals[J]. JACC Basic Transl Sci, 2021, 6(3):239-254.
|
49 |
Sahito RGA, Sheng X, Maass M, et al. In vitro grown micro-tissues for cardiac cell replacement therapy in vivo[J]. Cell Physiol Biochem, 2019, 52(6):1309-1324.
|
50 |
Mitsutake Y, Pyun WB, Rouy D, et al. Improvement of local cell delivery using helix transendocardial delivery catheter in a porcine heart[J]. Int Heart J, 2017, 58(3):435-440.
|
51 |
Miyagawa S, Kainuma S, Kawamura T, et al. Transplantation of iPSC-derived cardiomyocyte patches for ischemic cardiomyopathy[J]. med Rxiv, 2022:21268295. DOI: 10.1101/2021.12.27.21268295
|
52 |
Weinberger F, Breckwoldt K, Pecha S, et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells[J]. Sci Transl Med, 2016, 8(363):363ra148. doi: 10.1126/scitranslmed.aaf8781.
|
53 |
Gao L, Kupfer ME, Jung JP, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold[J]. Circ Res, 2017, 120(8):1318-1325.
|
54 |
Munarin F, Kant RJ, Rupert CE, et al. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts[J]. Biomaterials, 2020, 251:120033. doi: 10.1016/j.biomaterials.2020.120033.
|
55 |
Ye L, Chang YH, Xiong Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells[J]. Cell Stem Cell, 2014, 15(6):750-761.
|
56 |
Li J, Minami I, Shiozaki M, et al. Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted myocardium[J]. Stem Cell Reports, 2017, 9(5):1546-1559.
|
57 |
Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci (Weinh), 2019, 6(11):1900344. doi: 10.1002/advs.201900344.
|
58 |
van der Meer AD, Orlova VV, ten Dijke P, et al. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device[J]. Lab Chip, 2013, 13(18):3562-3568.
|
59 |
Shen MJ. The cardiac autonomic nervous system: an introduction[J]. Herzschrittmacherther Elektrophysiol, 2021, 32(3):295-301.
|
60 |
Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, et al. A network of macrophages supports mitochondrial homeostasis in the heart[J]. Cell, 2020, 183(1):94-109.e23.
|
61 |
Hulsmans M, Clauss S, Xiao L, et al. Macrophages facilitate electrical conduction in the heart[J]. Cell, 2017, 169(3):510-522.e20.
|
62 |
Li Y, Feng J, Song S, et al. gp130 controls cardiomyocyte proliferation and heart regeneration[J]. Circulation, 2020, 142(10):967-982.
|
63 |
Rusinkevich V, Huang Y, Chen ZY, et al. Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A[J]. ActaPharmacol Sin, 2019, 40(9):1168-1183.
|
64 |
Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients[J]. Nat Biotechnol, 2019, 37(3):252-258.
|
65 |
Deuse T, Tediashvili G, Hu X, et al. Hypoimmune induced pluripotent stem cell-derived cell therapeutics treat cardiovascular and pulmonary diseases in immunocompetent allogeneic mice[J]. Proc Natl Acad Sci U S A, 2021, 118(28):e2022091118. doi: 10.1073/pnas.2022091118.
|
66 |
Buikema JW, Lee S, Goodyer WR, et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes[J]. Cell Stem Cell, 2020, 27(1):50-63.e55.
|
67 |
Finklea FB, Tian Y, Kerscher P, et al. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells[J]. Biomaterials, 2021, 274:120818. doi: 10.1016/j.biomaterials.2021.120818.
|