1 |
Yusuf S, Joseph P, Dans A, et al. Polypill with or without aspirin in persons without cardiovascular disease[J]. N Engl J Med, 2021, 384(3): 216-228.
|
2 |
Nigro P, Bassetti B, Cavallotti L, et al. Cell therapy for heart disease after 15 years: unmet expectations[J]. Pharmacol Res, 2018,127:77-91.
|
3 |
Marunouchi T, Sasaki K, Yano E, et al. Transplantation of cardiac Sca-1-positive cells rather than c-Kit-positive cells preserves mitochondrial oxygen consumption of the viable myocardium following myocardial infarction in rats[J]. J Pharmacol Sci, 2019, 140(3): 236-241.
|
4 |
Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis[J]. Stem Cell Res Ther, 2021, 12(1): 519.
|
5 |
Zhao L, Cheng G, Choksi K, et al. Transplantation of human umbilical cord blood-derived cellular fraction improves left ventricular function and remodeling after myocardial ischemia/reperfusion[J]. Circ Res, 2019, 125(8): 759-772.
|
6 |
Funakoshi S, Fernandes I, Mastikhina O, et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells[J]. Nat Commun, 2021, 12(1): 3155.
|
7 |
Colzani M, Malcor JD, Hunter EJ, et al. Modulating hESC-derived cardiomyocyte and endothelial cell function with triple-helical peptides for heart tissue engineering[J]. Biomaterials, 2021, 269: 120612.
|
8 |
Gandia C, Armiñan A, García-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction[J]. Stem Cells, 2008, 26(3): 638-645.
|
9 |
Lee HW, Lee HC, Park JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model[J]. Yonsei Med J, 2015, 56(6):1522-1529.
|
10 |
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228.
|
11 |
Najafipour H, Bagheri-Hosseinabadi Z, Eslaminejad T, et al. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions[J]. Cell Tissue Res, 2019, 378(1): 127-141.
|
12 |
Houtgraaf JH, den Dekker WK, van Dalen BM, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2012, 59(5): 539-540.
|
13 |
Qiao L, Kong Y, Shi Y, et al. Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats[J]. Life Sci, 2019, 239: 116891.
|
14 |
Hou F, Geng Q, Zhang F, et al. Protective effects of induced cardiosphere on myocardial ischemia-reperfusion injury through secreting interleukin 10[J]. Int Immunopharmacol, 2020, 80: 106207.
|
15 |
Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial[J]. Am Heart J, 2014, 168(1): 88-95.e2.
|
16 |
Kashiyama N, Kormos RL, Matsumura Y, et al. Adipose-derived stem cell sheet under an elastic patch improves cardiac function in rats after myocardial infarction[J]. J Thorac Cardiovasc Surg, 2020,163(4):e261-e272.
|
17 |
Mori D, Miyagawa S, Yajima S, et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model[J]. Transplantation, 2018, 102(12): 2012-2024.
|
18 |
Bobi J, Solanes N, Fernández-Jiménez R, et al. Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction[J]. J Am Heart Assoc, 2017, 6(5) :e005771.
|
19 |
Qayyum AA, Mathiasen AB, Helqvist S, et al. Autologous adipose-derived stromal cell treatment for patients with refractory angina (mystromalcell trial): 3-years follow-up results[J]. J Transl Med, 2019, 17(1): 360.
|
20 |
Bodi V, Sanchis J, Nunez J, et al. Uncontrolled immune response in acute myocardial infarction: unraveling the thread[J]. Am Heart J, 2008, 156(6): 1065-1073.
|
21 |
van Dijk A, Naaijkens BA, Jurgens WJ, et al. Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application[J]. Stem Cell Res, 2011, 7(3): 219-229.
|
22 |
Naaijkens BA, van Dijk A, Kamp O, et al. Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models[J]. Stem Cell Rev Rep, 2014, 10(3): 389-398.
|
23 |
Yokoyama R, Ii M, Masuda M, et al. Cardiac Regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction[J]. Stem Cells Transl Med, 2019, 8(10): 1055-1067.
|
24 |
Stevens KR, Murry CE. Human pluripotent stem cell-derived engineered tissues: clinical considerations[J]. Cell Stem Cell, 2018, 22(3): 294-297.
|
25 |
Khazaei S, Soleimani M, Tafti SHA, et al. Improvement of heart function after transplantation of encapsulated stem cells induced with mir-1/myocd in myocardial infarction model of rat[J]. Cell Transplant, 2021. 30: 9636897211048786.
|
26 |
Kakkar A, Nandy SB, Gupta S, et al. Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells[J]. Mol Cell Biochem, 2019, 460(1-2): 53-66.
|
27 |
Bagheri-Hosseinabadi Z, Salehinejad P, Mesbah-Namin SA. Differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in fibrin scaffold by a histone deacetylase inhibitor[J]. Biomed Eng Online, 2017,16(1): 134.
|
28 |
Strem BM, Zhu M, Alfonso Z, et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury[J]. Cytotherapy, 2005, 7(3): 282-291.
|
29 |
Wang H, Shi J, Wang Y, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction[J]. Biomaterials, 2014, 35(13): 3986-3998.
|
30 |
Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance[J]. Am J Physiol Heart Circ Physiol, 2006, 290(6): H2196-2203.
|
31 |
Yamada Y, Wang XD, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium[J]. Biochem Biophys Res Commun, 2006, 342(2): 662-670.
|
32 |
Yang D, Wang W, Li L, et al. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair[J]. PLoS One, 2013, 8(3): e59020.
|
33 |
Mazo M, Planat-Bénard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction[J]. Eur J Heart Fail, 2008, 10(5): 454-462.
|
34 |
Miranville A, Heeschen C, Sengenès C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells[J]. Circulation, 2004, 110(3): 349-355.
|
35 |
Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications[J]. Int J Obes (Lond), 2016, 40(1): 102-111.
|
36 |
Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs[J]. Circulation, 1994, 89(5): 2183-2189.
|
37 |
Lin J, Zhu Q, Huang J, et al. Hypoxia promotes vascular smooth muscle cell (vsmc) differentiation of adipose-derived stem cell (adsc) by regulating mettl3 and paracrine factors[J]. Stem Cells Int, 2020, 2020: 2830565.
|
38 |
Sun CK, Zhen YY, Leu S, et al. Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction[J]. Int J Cardiol, 2014, 173(3): 410-423.
|
39 |
Gao L, Mei S, Zhang S, et al. Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells[J]. Theranostics, 2020, 10(3): 1060-1073.
|
40 |
Lee TL, Lai TC, Lin SR, et al. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway[J]. Theranostics, 2021, 11(7): 3131-3149.
|
41 |
Lee CY, Shin S, Lee J, et al. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart[J]. Int J Mol Sci, 2016, 17(10):1752.
|
42 |
Lee TM, Lee CC, Harn HJ, et al. Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress-mediated hippocampal damage after myocardial infarction[J]. J Mol Med (Berl), 2021, 99(12): 1815-1827.
|
43 |
Yan W, Guo Y, Tao L, et al. C1q/tumor necrosis factor-related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways[J]. Circulation, 2017, 136(22): 2162-2177.
|
44 |
Kondo K, Shintani S, Shibata R, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1): 61-66.
|
45 |
Huang H, Xu Z, Qi Y, et al. Exosomes from SIRT1-overexpressing ADSCs restore cardiac function by improving angiogenic function of EPCs[J]. Mol Ther Nucleic Acids, 2020, 21: 737-750.
|
46 |
Horie H, Hisatome I, Kurata Y, et al. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats[J]. Hypertens Res, 2022, 45(2):283-291.
|
47 |
Lee TM, Harn HJ, Chiou TW, et al. Preconditioned adipose-derived stem cells ameliorate cardiac fibrosis by regulating macrophage polarization in infarcted rat hearts through the PI3K/STAT3 pathway[J]. Lab Invest, 2019, 99(5): 634-647.
|
48 |
Acquistapace A, Bru T, Lesault PF, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer[J]. Stem Cells, 2011, 29(5):812-824.
|
49 |
Lee TM, Harn HJ, Chiou TW, et al. Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats[J]. Redox Biol, 2019, 27: 101170.
|
50 |
Lee TM, Harn HJ, Chiou TW, et al. Targeting the pathway of GSK-3β/nerve growth factor to attenuate post-infarction arrhythmias by preconditioned adipose-derived stem cells[J]. J Mol Cell Cardiol, 2017, 104:17-30.
|
51 |
Yue Y, Zhang P, Liu D, et al. Hypoxia preconditioning enhances the viability of ADSCs to increase the survival rate of ischemic skin flaps in rats[J]. Aesthetic Plast Surg, 2013, 37(1):159-170.
|
52 |
Dzhoyashvili NA, Efimenko AY, Kochegura TN, et al. Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2[J]. J Transl Med, 2014, 12: 337.
|
53 |
Wang B, Ma X, Zhao L, et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction[J]. Clin Exp Med, 2016, 16(4): 539-550.
|
54 |
Yan W, Lin C, Guo Y, et al. N-cadherin overexpression mobilizes the protective effects of mesenchymal stromal cells against ischemic heart injury through a β-catenin-dependent manner[J]. Circ Res, 2020, 126(7): 857-874.
|
55 |
Shi CZ, Zhang XP, Lv ZW, et al. Adipose tissue-derived stem cells embedded with eNOS restore cardiac function in acute myocardial infarction model[J]. Int J Cardiol, 2012, 154(1):2-8.
|
56 |
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
|
57 |
Zhang N, Song Y, Huang Z, et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model[J]. Biomaterials, 2020, 255: 120168.
|
58 |
Díaz-Herráez P, Saludas L, Pascual-Gil S, et al. Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model[J]. J Control Release, 2017, 249:23-31.
|
59 |
Bao R, Tan B, Liang S, et al. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction[J]. Biomaterials, 2017,122: 63-71.
|
60 |
Liang W, Chen J, Li L, et al. Conductive hydrogen sulfide-releasing hydrogel encapsulating adscs for myocardial infarction treatment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 14619-14629.
|
61 |
Wang W, Tan B, Chen J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials, 2018, 160: 69-81.
|
62 |
de Cerio A L, Perez-Estenaga I, Inoges S, et al. Preclinical evaluation of the safety and immunological action of allogeneic adsc-collagen scaffolds in the treatment of chronic ischemic cardiomyopathy[J]. Pharmaceutics, 2021, 13(8):1269.
|
63 |
Singelyn JM, DeQuach JA, Seif-Naraghi SB, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials, 2009, 30(29): 5409-5416.
|
64 |
Souza VS, Antonio EL, de Melo BL, et al. Increased myocardial retention of mesenchymal stem cells post-MI by pre-conditioning exercise training[J]. Stem Cell Rev Rep, 2020, 16(4): 730-741.
|
65 |
de Souza Vieira S, Antonio EL, de Melo BL, et al. Exercise training potentiates the cardioprotective effects of stem cells post-infarction[J]. Heart Lung Circ, 2019, 28(2): 263-271.
|
66 |
Sharma AK, Kumar A, Sahu M, et al. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction[J]. Microvasc Res, 2018, 120: 59-66.
|
67 |
Henry TD, Pepine CJ, Lambert CR, et al. The athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction[J]. Catheter Cardiovasc Interv, 2017, 89(2): 169-177.
|
68 |
Qayyum AA, Mathiasen AB, Mygind ND, et al. Cardiac magnetic resonance imaging used for evaluation of adipose-derived stromal cell therapy in patients with chronic ischemic heart disease[J]. Cell Transplant, 2019, 28(12): 1700-1708.
|
69 |
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications[J]. Curr Mol Med, 2012, 12(5): 574-591.
|