切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (04) : 207 -214. doi: 10.3877/cma.j.issn.2095-1221.2021.04.003

论著

K562来源的外泌体对骨髓间充质干细胞造血和成骨基因表达的影响
李应明1, 陈华1,(), 伍燕1   
  1. 1. 570208 海口,海南省海口市人民医院输血科
  • 收稿日期:2021-01-23 出版日期:2021-08-01
  • 通信作者: 陈华

The effects of K562 cell-derived exosomes on the hematopoietic and osteogenic gene expressions of bone marrow mesenchymal stem cells

Yingming Li1, Hua Chen1,(), Yan Wu1   

  1. 1. Department of Blood Transfusion, Haikou People's Hospital, Haikou 570208, China
  • Received:2021-01-23 Published:2021-08-01
  • Corresponding author: Hua Chen
引用本文:

李应明, 陈华, 伍燕. K562来源的外泌体对骨髓间充质干细胞造血和成骨基因表达的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 207-214.

Yingming Li, Hua Chen, Yan Wu. The effects of K562 cell-derived exosomes on the hematopoietic and osteogenic gene expressions of bone marrow mesenchymal stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(04): 207-214.

目的

探讨K562细胞来源的外泌体(EXO)对骨髓间充质干细胞(BMMSCs)支持造血和成骨分化相关因子表达的影响。

方法

利用超速离心法提取K562细胞培养上清中的EXO并进行鉴定。在体外,诱导BMMSCs的成骨分化,根据是否加入EXO分为3组:BMMSCs+PBS、BMMSCs+EXO (25 μg/mL)、BMMSCs+EXO (50 μg/mL)。qRT-PCR和Western blot检测BMMSCs中支持造血和成骨基因的表达,ELISA测定碱性磷酸酶(ALP)活性和细胞基质钙含量。多时间点间比较采用重复测量方差分析,多组间差异采用ANOVA分析,组间两两比较采用Tukey's test检验。

结果

三组各时间点CXC型趋化因子配体12 (CXCL12)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、白细胞介素-6 (IL-6)、Runt相关转录因子2 (RUNX2)、碱性磷酸酶(ALP)和Ⅰ型胶原酶(Col Ⅰ) mRNA表达及ALP活性和细胞基质钙含量行重复测量方法分析发现,时间点间、组间、组间×时间点间差异均有统计学意义(P < 0.05);与BMMSCs+PBS相比,BMMSCs+EXO (25、50 μg/mL)组在第1、3、7天的CXCL12、GM-CSF、RUNX2、ALP和Col ⅠmRNA水平下调,IL-6 mRNA水平上调,差异有统计学意义(P < 0.05)。与BMMSCs+EXO (25 μg/mL)组相比,BMMSCs+EXO (50 μg/mL)组CXCL12 (3 d:0.42±0.11比0.26±0.12,7 d:0.39±0.11比0.24±0.10)、RUNX2 (3 d:0.24±0.10比0.10±0.03)和Col ⅠmRNA水平(1 d:0.74±0.19比0.58±0.20,7 d:0.12±0.16比0.08±0.16)下调,IL-6 mRNA水平(1 d:1.36±0.54比2.14±0.42,3 d:2.46±0.47比3.30±0.42,7 d:3.62±0.49比4.30±0.48)上调,差异有统计学意义(P < 0.05)。Western blot发现,与BMMSCs+PBS相比,BMMSCs+EXO (25、50 μg/mL)组CXCL12 (1.00比0.54±0.10、0.32±0.08)、GM-CSF (1.00比0.46±0.12、0.42±0.03)、RUNX2 (1.00比0.57±0.12、0.45±0.23)、ALP (1.00比0.46±0.06、0.35±0.23)和ColⅠ表达(1.00比0.74±0.15、0.53±0.23)降低,IL-6表达(1.00比5.24±0.25、10.27±0.13)增加,差异有统计学意义(P < 0.05)。与BMMSCs+EXO (25 μg/mL)组相比,BMMSCs+EXO (50 μg/mL)组CXCL12表达(0.54±0.10比0.32±0.08)降低,IL-6表达(5.24±0.25比10.27±0.13)增加,差异有统计学意义(P均< 0.05)。此外,与BMMSCs+PBS组相比,BMMSCs+EXO (25、50 μg/mL)组ALP活性(7 d:1.75±0.58比0.72±0.18、0.58±0.16,14 d:2.78±0.75比1.50±0.32、0.83±0.30)和细胞基质钙含量(14 d:2.73±0.68比1.43±0.42、0.85±0.40)降低,差异有统计学意义(P < 0.05)。

结论

K562细胞来源的EXO影响BMMSCs支持造血和成骨相关因子的表达,抑制了BMMSCs的成骨分化,并且有可能影响其支持造血功能。

Objective

This study was aimed to investigate the effects of K562 cell-derived exosomes on the expression of genes supporting hemopoiesis and osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs) .

Methods

The exosomes in the supernatant of K562 cell culture were isolated by ultracentrifugation and identified. Osteogenic differentiation of BMMSCs was induced in vitro. According to whether exosomes were added, three groups were formed: BMMSCs+PBS, BMMSCs+EXO (25 μg/mL) , and BMMSCs+EXO (50 μg/mL) . The expression of hemopoiesis and osteogenesis-supporting genes in BMMSCs was detected by RT-PCR and Western Blot. ALP activity and cell matrix calcium content were determined by ELISA. Repeated measures ANOVA was used to examine mean differences at different time points, ANOVA analysis to detect differences among multiple groups, and Tukey's test was used for pairwise comparison between groups.

Results

The CXCL12, GM-CSF, IL-6, RUNX2, ALP and ColⅠmRNA expression, alkaline phosphatase activity and cell matrix calcium content in the three groups at each time point were analyzed by repeated measurements and it was found that the differences between time points, groups, and groups×time points were statistically significant (P < 0.05) . Compared with BMMSCs+PBS, on day 1, 3 and 7, CXCL12, GM-CSF, RUNX2, ALP and ColⅠmRNA levels were down-regulated and IL-6 mRNA levels were up-regulated in the BMMSCs+EXO (25 μg/mL and 50 μg/mL) group, and the difference was statistically significant (P < 0.05) . Compared with the BMMSCs+EXO (25 μg/mL) group, the CXCL12 (3 d: 0.42±0.11 vs 0.26±0.12; 7 d: 0.39±0.11 vs 0.24±0.10) , RUNX2 (3 d: 0.24±0.10 vs 0.10±0.03) and ColⅠ (1 d: 0.74±0.19 vs 0.58±0.20; 7 d: 0.12±0.16 vs 0.08±0.16) mRNA levels were down-regulated and IL-6 (1 d:1.36±0.54 vs 2.14±0.42; 3 d:2.46±0.47 vs 3.30±0.42; 7 d:3.62±0.49 vs 4.30±0.48) mRNA levels were up-regulated in the BMMSCs+EXO (50 μg/mL) group, and the difference was statistically significant (P < 0.05) . Compared with BMMSCs+PBS, the expressions of CXCL12 (1.00 vs 0.54±0.10, 0.32±0.08) , GM-CSF (1.00 vs 0.46±0.12, 0.42±0.03) , RUNX2 (1.00 vs 0.57±0.12, 0.45±0.23) , ALP (1.00 vs 0.46±0.06, 0.35±0.23) and ColⅠ (1.00 vs 0.74±0.15,0.53±0.23) were decreased and IL-6 (1.00 vs 5.24±0.25, 10.27±0.13) was increased in the BMMSCs+EXO (25 μg/mL and 50 μg/mL) group, and the difference was statistically significant (P < 0.05) . Compared with the BMMSCs+EXO (25 μg/ml) group, the expression of CXCL12 (0.54±0.10 vs 0.32±0.08) was decreased and IL-6 (5.24±0.25 vs 10.27±0.13) was increased in the BMMSCs+EXO (50 μg/mL) group, and the difference was statistically significant (P < 0.05) . In addition, compared with BMMSCs+PBS, ALP activity (7 d: 1.75±0.58 vs 0.72±0.18, 0.58±0.16; 14 d: 2.78±0.75 vs 1.50±0.32, 0.83±0.30) and cell matrix calcium content (14 d: 2.73±0.68 vs 1.43±0.42, 0.85±0.40) in the BMMSCs+EXO (25 μg/mL and 50 μg/mL) group were decreased, and the difference was statistically significant (P < 0.05) .

Conclusion

K562 cell-derived exosomes affect the expression of hemopoiesis and osteogenesis-supporting genes in BMMSCs, thereby inhibiting osteogenic differentiation of BMMSCs, and may affect the function supporting hemopoiesis.

表1 引物序列
图1 外泌体的特征
图2 K562细胞来源的外泌体对BMMSCs支持造血和成骨分化相关因子蛋白表达的影响
表2 K562细胞来源的外泌体对BMMSCs CXCL12、GM-CSF、IL-6 mRNA表达的影响( ± s
表3 K562细胞来源的外泌体对BMMSCs CXCL12、GM-CSF和IL-6蛋白表达的影响( ± s
表4 K562细胞来源的外泌体对BMMSCs RUNX2、ALP和Col Ⅰ mRNA表达的影响( ± s
表5 K562细胞来源的外泌体对BMMSCs RUNX2、ALP和Col Ⅰ蛋白表达的影响( ± s
表6 K562细胞来源的外泌体对BMMSCs的ALP活性和细胞基质钙含量的影响
1
Agarwal A, Fleischman AG, Petersen CL, et al. Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML[J]. Blood, 2012, 120(13):2658-2668.
2
Corrado C, Saieva L, Raimondo S, et al. Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor[J]. J Cell Mol Med, 2016, 20(10):1829-1839.
3
Seke Etet PF, Vecchio L, Nwabo Kamdje AH. Signaling pathways in chronic myeloid leukemia and leukemic stem cell maintenance: Key role of stromal microenvironment[J]. Cell Signal, 2012, 24(9):1883-1888.
4
Qazi KR, Torregrosa Paredes P, Dahlberg B, et al. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis[J]. Thorax, 2010, 65(11):1016-1024.
5
Turpin D, Truchetet M, Faustin B, et al. Role of extracellular vesicles in autoimmune diseases[J]. Autoimmun Rev, 2016, 15(2):174-183.
6
Zheng X, Chen F, Zhang Q, et al. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease[J]. Protein Cell, 2017, 8(9):686-695.
7
Shrivastava S, Morris KV. The Multifunctionality of exosomes; from the garbage bin of the cell to a next generation gene and cellular therapy[J]. Genes, 2021, 12(2):173. doi: 10.3390/genes12020173.
8
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8):569-579.
9
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6):1226-1232.
10
Jiang Y, Liu J, Lin J, et al. K562 cell-derived exosomes suppress the adhesive function of bone marrow mesenchymal stem cells via delivery of miR-711[J]. Biochem Biophys Res Commun, 2020, 521(3):584-589.
11
Tu C, Du Z, Zhang H, et al. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells[J]. Theranostics, 2021, 11(5):2364-2380.
12
Rashid MH, Borin TF, Ara R, et al. Critical immunosuppressive effect of MDSCderived exosomes in the tumor microenvironment[J]. Oncol Rep, 2021, 45(3):1171-1181.
13
Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p[J]. J Extracell Vesicles, 2021, 10(3):e12056. doi: 10.1002/jev2.12056.
14
Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion[J]. Leukemia, 2017, 32(3):575-587.
15
Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia[J] Int J Cancer, 1977, 19(1):136. doi: 10.1002/ijc.2910190119.
16
Mineo M, Garfield SH, Taverna S, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a src-dependent fashion[J]. Angiogenesis, 2012, 15(1):33-45.
17
Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, Chapter 3:Unit 3.22. doi: 10.1002/0471143030.
18
Whiteside TL. Tumor-derived exosomes and their role in cancer progression[J] Adv Clin Chem, 2016, 74:103-41.
19
Arnulf B, Lecourt S, Soulier J, et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma[J]. Leukemia, 2007, 21(1):158-163.
20
Wang J, De Veirman K, Faict S, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression[J]. J Pathol, 2016, 239(2):162-173.
21
Boyiadzis M, Whiteside TL. Exosomes in acute myeloid leukemia inhibit hematopoiesis[J]. Curr Opin Hematol, 2018, 25(4):279-284.
22
Cho B, Kim H, Konopleva M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside[J]. Korean J Intern Med, 2017, 32(2):248-257.
23
Huan J, Hornick NI, Goloviznina NA, et al. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes[J]. Leukemia, 2015, 29(12):2285-2295.
24
Taverna S, Amodeo V, Saieva L, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells[J]. Mol Cancer, 2014, 13:169. doi: 10.1186/1476-4598-13-169.
25
Jafarzadeh N, Safari Z, Pornour M, et al. Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes[J]. J Cell Physiol, 2019, 234(4):3697-3710.
26
Cho SW, Pirih FQ, Koh AJ, et al. The soluble interleukin-6 receptor is a mediator of hematopoietic and skeletal actions of parathyroid hormone[J]. J Biol Chem, 2013, 288(10):6814-6825.
27
O'Hagan-Wong K, Nadeau S, Carrier-Leclerc A, et al. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis[J]. Oncotarget, 2016, 7(12):13285-13296.
28
Zhu F, McCaw L, Spaner DE, et al. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro[J]. Leuk Res, 2018, 66:28-38.
29
Wang HQ, Jia L, Li YT, et al. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia[J]. J Cell Physiol, 2019, 234(8):13994-14006.
30
Kassem NM, Ayad AM, El Husseiny NM, et al. Role of granulocyte-macrophage colony-stimulating factor in acute myeloid leukemia/myelodysplastic syndromes[J] J Glob Oncol, 2018, 4:1-6.
31
Xia P, Gu R, Zhang W, et al. MicroRNA-200c promotes osteogenic differentiation of human bone mesenchymal stem cells through activating the AKT/beta-Catenin signaling pathway via downregulating Myd88[J]. J Cell Physiol, 2019, 234(12):22675-22686.
32
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells[J]. Differentiation, 2016, 92(1-2):41-51.
33
Murakami J, Ishii M, Suehiro F, et al. Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway[J]. Biochem Biophys Res Commun, 2017, 484(3):710-718.
34
Krause U, Seckinger A, Gregory CA. Assays of osteogenic differentiation by cultured human mesenchymal stem cells[J]. Methods Mol Biol, 2011, 698:215-230.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 郭杰坤, 王楹, 杨轩, 晏欢欣, 钟豪. Ilizarov 骨搬移技术在急诊一期修复GustiloⅢB 型胫骨长段开放粉碎性骨折的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 507-510.
[5] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[6] 刘云, 时月, 郭冬梅, 邱志远, 王丽娟, 冉学红, 李乾鹏. 造血干细胞移植治疗伴有胚系突变的髓系肿瘤患者三例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 230-234.
[7] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[8] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[9] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[10] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[11] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要