1 |
Agarwal A, Fleischman AG, Petersen CL, et al. Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML[J]. Blood, 2012, 120(13):2658-2668.
|
2 |
Corrado C, Saieva L, Raimondo S, et al. Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor[J]. J Cell Mol Med, 2016, 20(10):1829-1839.
|
3 |
Seke Etet PF, Vecchio L, Nwabo Kamdje AH. Signaling pathways in chronic myeloid leukemia and leukemic stem cell maintenance: Key role of stromal microenvironment[J]. Cell Signal, 2012, 24(9):1883-1888.
|
4 |
Qazi KR, Torregrosa Paredes P, Dahlberg B, et al. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis[J]. Thorax, 2010, 65(11):1016-1024.
|
5 |
Turpin D, Truchetet M, Faustin B, et al. Role of extracellular vesicles in autoimmune diseases[J]. Autoimmun Rev, 2016, 15(2):174-183.
|
6 |
Zheng X, Chen F, Zhang Q, et al. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease[J]. Protein Cell, 2017, 8(9):686-695.
|
7 |
Shrivastava S, Morris KV. The Multifunctionality of exosomes; from the garbage bin of the cell to a next generation gene and cellular therapy[J]. Genes, 2021, 12(2):173. doi: 10.3390/genes12020173.
|
8 |
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8):569-579.
|
9 |
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6):1226-1232.
|
10 |
Jiang Y, Liu J, Lin J, et al. K562 cell-derived exosomes suppress the adhesive function of bone marrow mesenchymal stem cells via delivery of miR-711[J]. Biochem Biophys Res Commun, 2020, 521(3):584-589.
|
11 |
Tu C, Du Z, Zhang H, et al. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells[J]. Theranostics, 2021, 11(5):2364-2380.
|
12 |
Rashid MH, Borin TF, Ara R, et al. Critical immunosuppressive effect of MDSCderived exosomes in the tumor microenvironment[J]. Oncol Rep, 2021, 45(3):1171-1181.
|
13 |
Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p[J]. J Extracell Vesicles, 2021, 10(3):e12056. doi: 10.1002/jev2.12056.
|
14 |
Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion[J]. Leukemia, 2017, 32(3):575-587.
|
15 |
Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia[J] Int J Cancer, 1977, 19(1):136. doi: 10.1002/ijc.2910190119.
|
16 |
Mineo M, Garfield SH, Taverna S, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a src-dependent fashion[J]. Angiogenesis, 2012, 15(1):33-45.
|
17 |
Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, Chapter 3:Unit 3.22. doi: 10.1002/0471143030.
|
18 |
Whiteside TL. Tumor-derived exosomes and their role in cancer progression[J] Adv Clin Chem, 2016, 74:103-41.
|
19 |
Arnulf B, Lecourt S, Soulier J, et al. Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma[J]. Leukemia, 2007, 21(1):158-163.
|
20 |
Wang J, De Veirman K, Faict S, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression[J]. J Pathol, 2016, 239(2):162-173.
|
21 |
Boyiadzis M, Whiteside TL. Exosomes in acute myeloid leukemia inhibit hematopoiesis[J]. Curr Opin Hematol, 2018, 25(4):279-284.
|
22 |
Cho B, Kim H, Konopleva M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside[J]. Korean J Intern Med, 2017, 32(2):248-257.
|
23 |
Huan J, Hornick NI, Goloviznina NA, et al. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes[J]. Leukemia, 2015, 29(12):2285-2295.
|
24 |
Taverna S, Amodeo V, Saieva L, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells[J]. Mol Cancer, 2014, 13:169. doi: 10.1186/1476-4598-13-169.
|
25 |
Jafarzadeh N, Safari Z, Pornour M, et al. Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes[J]. J Cell Physiol, 2019, 234(4):3697-3710.
|
26 |
Cho SW, Pirih FQ, Koh AJ, et al. The soluble interleukin-6 receptor is a mediator of hematopoietic and skeletal actions of parathyroid hormone[J]. J Biol Chem, 2013, 288(10):6814-6825.
|
27 |
O'Hagan-Wong K, Nadeau S, Carrier-Leclerc A, et al. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis[J]. Oncotarget, 2016, 7(12):13285-13296.
|
28 |
Zhu F, McCaw L, Spaner DE, et al. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro[J]. Leuk Res, 2018, 66:28-38.
|
29 |
Wang HQ, Jia L, Li YT, et al. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia[J]. J Cell Physiol, 2019, 234(8):13994-14006.
|
30 |
Kassem NM, Ayad AM, El Husseiny NM, et al. Role of granulocyte-macrophage colony-stimulating factor in acute myeloid leukemia/myelodysplastic syndromes[J] J Glob Oncol, 2018, 4:1-6.
|
31 |
Xia P, Gu R, Zhang W, et al. MicroRNA-200c promotes osteogenic differentiation of human bone mesenchymal stem cells through activating the AKT/beta-Catenin signaling pathway via downregulating Myd88[J]. J Cell Physiol, 2019, 234(12):22675-22686.
|
32 |
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells[J]. Differentiation, 2016, 92(1-2):41-51.
|
33 |
Murakami J, Ishii M, Suehiro F, et al. Vascular endothelial growth factor-C induces osteogenic differentiation of human mesenchymal stem cells through the ERK and RUNX2 pathway[J]. Biochem Biophys Res Commun, 2017, 484(3):710-718.
|
34 |
Krause U, Seckinger A, Gregory CA. Assays of osteogenic differentiation by cultured human mesenchymal stem cells[J]. Methods Mol Biol, 2011, 698:215-230.
|