1 |
Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets[J]. World J Gastroenterol, 2016, 22(48):10512-10522.
|
2 |
Debray D, Mas E, Munck A, et al. Liver disease, gastrointestinal complications, nutritional management and feeding disorders in pediatric cystic fibrosis[J]. Arch Pediatr, 2016, 23(12S):12S15-12S20.
|
3 |
Xu M, Zhang F, Wang A, et al. Tumor necrosis Factor-Like weak inducer of apoptosis promotes hepatic stellate cells migration via canonical NF-κB/MMP9 pathway[J]. PLoS One, 2016, 11(12):e0167658.
|
4 |
Cheng CF, Pan TM. Ankaflavin and monascin induce apoptosis in activated hepatic stellate cells through suppression of the Akt/NF-κB/ p38 signaling pathway[J]. J Agric Food Chem, 2016, 64(49):9326-9334.
|
5 |
Miloradović Z, Ivanov M, Jovović Đ, et al. Angiotensin 2 type 1 receptor blockade different affects postishemic kidney injury in normotensive and hypertensive rats[J]. J Physiol Biochem, 2016, 72(4):813-820.
|
6 |
Wu Z, Wang Z, Dai F, et al. Dephosphorylation of Y685-VE-Cadherin involved in pulmonary microvascular endothelial barrier injury induced by angiotensin Ⅱ[J]. Mediators Inflamm, 2016 (2):8696481.
|
7 |
Li Z, Shen Z, Du L, et al. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin Ⅱ[J]. Am J Transl Res, 2016, 8(12):5386-5398.
|
8 |
Namsen R, Rojanasthien N, Sireeratawong S, et al. Thunbergia laurifolia Exhibits Antifibrotic Effects in Human Hepatic Stellate Cells[J]. Evid Based Complement Alternat Med, 2017, 4: 1-9.
|
9 |
Li Q, Li X, Deng CL. Induction of proliferation and activation of rat hepatic stellate cells via high glucose and high insulin[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5420-5429.
|
10 |
Bian EB, Wang YY, Yang Y, et al. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver[J]. Biochim Biophys Acta, 2017, 1863(3):674-686.
|
11 |
Cai SP, Cheng XY, Chen PJ, et al. Transmembrane protein 88 attenuates liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells[J]. Mol Immunol, 2016, 80:58-67.
|
12 |
Villalobos LA, San Hipólito-Luengo Á, Ramos-González M, et al. The angiotensin-(1-7)/Mas axis counteracts angiotensinⅡ-Dependent and -Independent pro-inflammatory signaling in human vascular smooth muscle cells[J]. Front Pharmacol, 2016, 7:482.
|
13 |
Pavo N, Wurm R, Goliasch G, et al. Renin-Angiotensin system fingerprints of heart failure with reduced ejection fraction[J]. J Am Coll Cardiol, 2016, 68(25):2912-2914.
|
14 |
Königshausen E, Zierhut UM, Ruetze M, et al. Angiotensin Ⅱ increases glomerular permeability by β-arrestin mediated nephrin endocytosis[J]. Sci Rep, 2016, 6:39513.
|
15 |
He P, Yu ZJ, Sun CY, et al. Knockdown of HIPK2 attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1[J]. Biomedicine & Pharmacotherapy, 2017, 85:575-581.
|
16 |
Gao R, Chen R, Cao Y, et al. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway[J]. Toxicol Appl Pharmacol, 2017, 318:1-7.
|
17 |
Huang T, Zhou Y, Cheng AS, et al. NOTCH1 receptors in gastric and other gastrointestinal cancers:oncogenes or tumor suppressors?[J]. Mol Cancer, 2016, 15(1):80.
|
18 |
Deng SM, Yan XC, Liang L, et al. The notch ligand delta-like 3 promotes tumor growth and inhibits notch signaling in lung cancer cells in mice[J]. Biochem Biophys Res Commun, 2017, 483(1):488-494.
|
19 |
Miller TJ, Mccoy MJ, Hemmings C, et al. The prognostic value of cancer stem-like cell markers SOX2 and CD133 in stage Ⅲ colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and CD3[J]. Pathology, 2017, 49(7):721-730.
|
20 |
Mukherjee P, Gupta A, Chattopadhyay D, et al. Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells[J]. Sci Rep, 2017, 7(1):9170.
|