切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 156 -160. doi: 10.3877/cma.j.issn.2095-1221.2018.03.006

所属专题: 文献

论著

AngⅡ通过激活Notch1/Sox2通路对肝星状细胞LX2的活化和增殖的作用
郑伟1, 常虎林1, 海军1, 宋晓雪1, 杜立学1,()   
  1. 1. 710068 西安,陕西省人民医院肝胆外科
  • 收稿日期:2017-10-08 出版日期:2018-06-01
  • 通信作者: 杜立学
  • 基金资助:
    陕西省科技新星基金(2011.KJXX-26)

Effect of Ang Ⅱ on the activation and proliferation of hepatic stellate cell LX2 by activating the Notch1/Sox2 pathway

Wei Zheng1, Hulin Chang1, Jun Hai1, Xiaoxue Song1, Lixue Du1,()   

  1. 1. Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
  • Received:2017-10-08 Published:2018-06-01
  • Corresponding author: Lixue Du
  • About author:
    Corresponding author: Du Lixue, Email:
引用本文:

郑伟, 常虎林, 海军, 宋晓雪, 杜立学. AngⅡ通过激活Notch1/Sox2通路对肝星状细胞LX2的活化和增殖的作用[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 156-160.

Wei Zheng, Hulin Chang, Jun Hai, Xiaoxue Song, Lixue Du. Effect of Ang Ⅱ on the activation and proliferation of hepatic stellate cell LX2 by activating the Notch1/Sox2 pathway[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 156-160.

目的

探讨AngⅡ通过靶向调控Notch1/Sox2肝星状细胞LX2细胞的增殖。

方法

通过CCK8检测AngⅡ对肝星状细胞增殖能力的影响,通过羟脯氨酸酸法检测AngⅡ对肝星状细胞胶原合成能力的影响,并通过脂质体转染siRNA-Notch1构建Notch1低表达细胞模型,通过CCK8检测敲低Notch1对AngⅡ诱导的肝星状细胞LX2增殖的影响,通过Western Blot检测敲低Notch1对AngⅡ诱导的肝星状细胞LX2蛋白表达的影响。所有的检测结果都进行生物学重复。采用方差分析和t检验进行统计学分析。

结果

CCK8结果显示,AngⅡ(5、10、20、40、80 nmol/L)预处理A450值分别为0.67±0.06、0.88±0.07、0.98±0.07、1.08±0.07、1.23±0.07,较对照组0.57±0.05上升,差异具有统计学意义(F = 45.76,P < 0.01),羟脯氨酸检查结果显示,AngⅡ(10、20、40 nmol/L)预处理组羟脯氨酸浓度分别为(2.60±0.20)、(3.47±0.25)、(4.17±0.21)mg/L,羟脯氨酸浓度较对照组(1.90±0.10)mg/L上升,差异具有统计学意义(F = 75.18,P < 0.01)。Western Blot结果显示,AngⅡ10、20、40 nmol/L组Notch1蛋白表达水平分别为0.20±0.02、0.54±0.04、0.82±0.03,与正常对照组0.11±0.02发生升高,差异具有统计学意义(F = 400.50,P < 0.01)。Notch1干扰后,CCK8结果显示,siRNA-Notch1+AngⅡ组(10、20、40 nmol/L)A450值分别为0.53±0.06、0.83±0.03、1.03±0.03,与siRNA-NC+ AngⅡ对照组0.97±0.06,1.43±0.06,1.73±0.06比较发生降低(P < 0.01)。进一步Western Blot结果显示,Notch1敲低组(AngⅡ+ siRNA-Notch1)Notch1、HES1和Sox2蛋白表达水平分别为1.47±0.12、0.77±0.06和0.50±0.10,分别与AngⅡ对照组2.83±0.15、2.20±0.10和1.17±0.06比较,差异具有统计学意义(P < 0.01)。

结论

AngⅡ通过激活Notch1/Sox2信号促进肝星状细胞LX2增殖。

Objective

To investigated the effect of AngiotensinⅡ(AngⅡ) on the proliferation and apoptosis of hepatic stellate cells (HSCs) LX2 by targeting Notch1.

Methods

The effect of AngⅡ on the proliferation of HSCs was detected by CCK8. The effect of AngII on the collagen synthesis ability of HSCs was detected by hydroxyproline acid method. The Notch1 low expression cell model was constructed by transfecting siRNA-Notch1 with liposome. The effect of Notch1 on the proliferation of LX2 cells induced by AngII was detected by CCK8. The effect of knockdown of Notch1 on the expression of LX2 protein in HSCs induced by AngⅡ was detected by Western Blot. All test results were biologically replicated. Statistical analysis was performed using the analysis of variance and t-test.

Results

CCK8 results showed that the A450 of AngII pretreatment (5, 10, 20, 40, and 80 nmol/L) were (0.67±0.06), (0.88±0.07), (0.98±0.07), (1.08±0.07), (1.23±0.07), which was significantly higher than that in the control group (0.57±0.05) (F = 45.76, P < 0.01). The hydroxyproline test results showed that hydroxyproline concentrations in LX2 AngII pretreatment (10, 20, 40 nmol/L) were (2.60±0.20), (3.47±0.25), and (4.17±0.21) mg/L, and the concentration of hydroxyproline was significantly higher than that of the control group (1.90±0.10) mg/L (F = 75.18, P < 0.01). Western Blot results showed that the expression levels of Notch1 protein in the AngⅡ (10, 20, and 40 nmol/L) groups (0.20±0.02, 0.54±0.04, 0.82±0.03) were significantly higher than those in the normal control group (0.11±0.02). (F = 400.50, P < 0.01). After Notch1 interference, CCK8 results showed that the A450 values in the siRNA-Notch1+AngⅡ group (10, 20, 40 nmol/ L) were (0.53±0.06), (0.83±0.03), (1.03±0.03), which was significantly lower than that in the siRNA-NC+AngⅡ control group (0.97±0.06), (1.43±0.06), (1.73±0.06) (P < 0.01). Further Western Blot results showed that the Notch1, HES1 and Sox2 protein expression levels in the Notch1 knockdown group (AngⅡ+siRNA-Notch1) (1.47±0.12, 0.77±0.06, 0.50±0.10) were significantly decreased, compared with the AngII control group (2.83±0.15, 2.20±0.10, 1.17 ± 0.06) (P < 0.01).

Conclusion

AngⅡpromote the proliferation of HSCs by activating Notch1/Sox2.

表1 不同浓度AngⅡ处理后CCK8检测LX2细胞A450值比较(±s
表2 不同浓度AngⅡ处理后消化法检测LX2细胞羟脯氨酸浓度(mg/L,±s
图1 AngⅡ对肝星状细胞胞Notch1蛋白表达的影响
表3 不同浓度AngⅡ诱导Notch1干扰前后的肝星状细胞增殖率A450的变化(nmol/L ,±s
表4 干扰Notch1AngⅡ诱导的肝星状细胞蛋白表达的变化(±s
图2 干扰Notch1和AngⅡ对人肝星状细胞蛋白表达的影响
1
Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets[J]. World J Gastroenterol, 2016, 22(48):10512-10522.
2
Debray D, Mas E, Munck A, et al. Liver disease, gastrointestinal complications, nutritional management and feeding disorders in pediatric cystic fibrosis[J]. Arch Pediatr, 2016, 23(12S):12S15-12S20.
3
Xu M, Zhang F, Wang A, et al. Tumor necrosis Factor-Like weak inducer of apoptosis promotes hepatic stellate cells migration via canonical NF-κB/MMP9 pathway[J]. PLoS One, 2016, 11(12):e0167658.
4
Cheng CF, Pan TM. Ankaflavin and monascin induce apoptosis in activated hepatic stellate cells through suppression of the Akt/NF-κB/ p38 signaling pathway[J]. J Agric Food Chem, 2016, 64(49):9326-9334.
5
Miloradović Z, Ivanov M, Jovović Đ, et al. Angiotensin 2 type 1 receptor blockade different affects postishemic kidney injury in normotensive and hypertensive rats[J]. J Physiol Biochem, 2016, 72(4):813-820.
6
Wu Z, Wang Z, Dai F, et al. Dephosphorylation of Y685-VE-Cadherin involved in pulmonary microvascular endothelial barrier injury induced by angiotensin Ⅱ[J]. Mediators Inflamm, 2016 (2):8696481.
7
Li Z, Shen Z, Du L, et al. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin Ⅱ[J]. Am J Transl Res, 2016, 8(12):5386-5398.
8
Namsen R, Rojanasthien N, Sireeratawong S, et al. Thunbergia laurifolia Exhibits Antifibrotic Effects in Human Hepatic Stellate Cells[J]. Evid Based Complement Alternat Med, 2017, 4: 1-9.
9
Li Q, Li X, Deng CL. Induction of proliferation and activation of rat hepatic stellate cells via high glucose and high insulin[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5420-5429.
10
Bian EB, Wang YY, Yang Y, et al. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver[J]. Biochim Biophys Acta, 2017, 1863(3):674-686.
11
Cai SP, Cheng XY, Chen PJ, et al. Transmembrane protein 88 attenuates liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells[J]. Mol Immunol, 2016, 80:58-67.
12
Villalobos LA, San Hipólito-Luengo Á, Ramos-González M, et al. The angiotensin-(1-7)/Mas axis counteracts angiotensinⅡ-Dependent and -Independent pro-inflammatory signaling in human vascular smooth muscle cells[J]. Front Pharmacol, 2016, 7:482.
13
Pavo N, Wurm R, Goliasch G, et al. Renin-Angiotensin system fingerprints of heart failure with reduced ejection fraction[J]. J Am Coll Cardiol, 2016, 68(25):2912-2914.
14
Königshausen E, Zierhut UM, Ruetze M, et al. Angiotensin Ⅱ increases glomerular permeability by β-arrestin mediated nephrin endocytosis[J]. Sci Rep, 2016, 6:39513.
15
He P, Yu ZJ, Sun CY, et al. Knockdown of HIPK2 attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1[J]. Biomedicine & Pharmacotherapy, 2017, 85:575-581.
16
Gao R, Chen R, Cao Y, et al. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway[J]. Toxicol Appl Pharmacol, 2017, 318:1-7.
17
Huang T, Zhou Y, Cheng AS, et al. NOTCH1 receptors in gastric and other gastrointestinal cancers:oncogenes or tumor suppressors?[J]. Mol Cancer, 2016, 15(1):80.
18
Deng SM, Yan XC, Liang L, et al. The notch ligand delta-like 3 promotes tumor growth and inhibits notch signaling in lung cancer cells in mice[J]. Biochem Biophys Res Commun, 2017, 483(1):488-494.
19
Miller TJ, Mccoy MJ, Hemmings C, et al. The prognostic value of cancer stem-like cell markers SOX2 and CD133 in stage Ⅲ colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and CD3[J]. Pathology, 2017, 49(7):721-730.
20
Mukherjee P, Gupta A, Chattopadhyay D, et al. Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells[J]. Sci Rep, 2017, 7(1):9170.
[1] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[2] 孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 石浩伟, 郝少龙, 纪宇, 孙浩, 聂芳, 胡阳, 李泽乾, 韩威. 长链非编码RNA-BANCR在胰腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2022, 16(05): 554-559.
[5] 雷震, 郭正辉, 唐晨, 彭圣萌, 任艳婷, 吴宛桦, 周杰, 陈勇明, 李凌峰, 黄海, 赖义明. ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 262-269.
[6] 李芬, 黄文娟, 朱乐攀. 色素上皮因子表达对肺癌细胞增殖及迁移能力的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 246-248.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 梁芳, 刘广申, 徐艳. LncRNA AC130710通过miR-129-5P/WNT4轴促进子宫内膜癌细胞增殖和上皮间质转化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 206-214.
[9] 李公豪, 赵艳丽, 彭中兴, 尹德录, 赵云峰. 下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 93-99.
[10] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[11] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[12] 汤永昌, 袁峰, 梁豪, 钟昭众, 熊志勇, 曹明波, 任昱朋, 李宇轩, 姚志成, 邓美海. HBx对HBV相关性肝癌增殖和迁移能力的影响及其机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 198-202.
[13] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 郭德华, 贺迎坤, 白卫星, 何艳艳, 李天晓. 脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化[J]. 中华介入放射学电子杂志, 2022, 10(02): 152-157.
阅读次数
全文


摘要