切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (03) : 156 -160. doi: 10.3877/cma.j.issn.2095-1221.2018.03.006

所属专题: 文献

论著

AngⅡ通过激活Notch1/Sox2通路对肝星状细胞LX2的活化和增殖的作用
郑伟1, 常虎林1, 海军1, 宋晓雪1, 杜立学1,()   
  1. 1. 710068 西安,陕西省人民医院肝胆外科
  • 收稿日期:2017-10-08 出版日期:2018-06-01
  • 通信作者: 杜立学
  • 基金资助:
    陕西省科技新星基金(2011.KJXX-26)

Effect of Ang Ⅱ on the activation and proliferation of hepatic stellate cell LX2 by activating the Notch1/Sox2 pathway

Wei Zheng1, Hulin Chang1, Jun Hai1, Xiaoxue Song1, Lixue Du1,()   

  1. 1. Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
  • Received:2017-10-08 Published:2018-06-01
  • Corresponding author: Lixue Du
  • About author:
    Corresponding author: Du Lixue, Email:
引用本文:

郑伟, 常虎林, 海军, 宋晓雪, 杜立学. AngⅡ通过激活Notch1/Sox2通路对肝星状细胞LX2的活化和增殖的作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 156-160.

Wei Zheng, Hulin Chang, Jun Hai, Xiaoxue Song, Lixue Du. Effect of Ang Ⅱ on the activation and proliferation of hepatic stellate cell LX2 by activating the Notch1/Sox2 pathway[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(03): 156-160.

目的

探讨AngⅡ通过靶向调控Notch1/Sox2肝星状细胞LX2细胞的增殖。

方法

通过CCK8检测AngⅡ对肝星状细胞增殖能力的影响,通过羟脯氨酸酸法检测AngⅡ对肝星状细胞胶原合成能力的影响,并通过脂质体转染siRNA-Notch1构建Notch1低表达细胞模型,通过CCK8检测敲低Notch1对AngⅡ诱导的肝星状细胞LX2增殖的影响,通过Western Blot检测敲低Notch1对AngⅡ诱导的肝星状细胞LX2蛋白表达的影响。所有的检测结果都进行生物学重复。采用方差分析和t检验进行统计学分析。

结果

CCK8结果显示,AngⅡ(5、10、20、40、80 nmol/L)预处理A450值分别为0.67±0.06、0.88±0.07、0.98±0.07、1.08±0.07、1.23±0.07,较对照组0.57±0.05上升,差异具有统计学意义(F = 45.76,P < 0.01),羟脯氨酸检查结果显示,AngⅡ(10、20、40 nmol/L)预处理组羟脯氨酸浓度分别为(2.60±0.20)、(3.47±0.25)、(4.17±0.21)mg/L,羟脯氨酸浓度较对照组(1.90±0.10)mg/L上升,差异具有统计学意义(F = 75.18,P < 0.01)。Western Blot结果显示,AngⅡ10、20、40 nmol/L组Notch1蛋白表达水平分别为0.20±0.02、0.54±0.04、0.82±0.03,与正常对照组0.11±0.02发生升高,差异具有统计学意义(F = 400.50,P < 0.01)。Notch1干扰后,CCK8结果显示,siRNA-Notch1+AngⅡ组(10、20、40 nmol/L)A450值分别为0.53±0.06、0.83±0.03、1.03±0.03,与siRNA-NC+ AngⅡ对照组0.97±0.06,1.43±0.06,1.73±0.06比较发生降低(P < 0.01)。进一步Western Blot结果显示,Notch1敲低组(AngⅡ+ siRNA-Notch1)Notch1、HES1和Sox2蛋白表达水平分别为1.47±0.12、0.77±0.06和0.50±0.10,分别与AngⅡ对照组2.83±0.15、2.20±0.10和1.17±0.06比较,差异具有统计学意义(P < 0.01)。

结论

AngⅡ通过激活Notch1/Sox2信号促进肝星状细胞LX2增殖。

Objective

To investigated the effect of AngiotensinⅡ(AngⅡ) on the proliferation and apoptosis of hepatic stellate cells (HSCs) LX2 by targeting Notch1.

Methods

The effect of AngⅡ on the proliferation of HSCs was detected by CCK8. The effect of AngII on the collagen synthesis ability of HSCs was detected by hydroxyproline acid method. The Notch1 low expression cell model was constructed by transfecting siRNA-Notch1 with liposome. The effect of Notch1 on the proliferation of LX2 cells induced by AngII was detected by CCK8. The effect of knockdown of Notch1 on the expression of LX2 protein in HSCs induced by AngⅡ was detected by Western Blot. All test results were biologically replicated. Statistical analysis was performed using the analysis of variance and t-test.

Results

CCK8 results showed that the A450 of AngII pretreatment (5, 10, 20, 40, and 80 nmol/L) were (0.67±0.06), (0.88±0.07), (0.98±0.07), (1.08±0.07), (1.23±0.07), which was significantly higher than that in the control group (0.57±0.05) (F = 45.76, P < 0.01). The hydroxyproline test results showed that hydroxyproline concentrations in LX2 AngII pretreatment (10, 20, 40 nmol/L) were (2.60±0.20), (3.47±0.25), and (4.17±0.21) mg/L, and the concentration of hydroxyproline was significantly higher than that of the control group (1.90±0.10) mg/L (F = 75.18, P < 0.01). Western Blot results showed that the expression levels of Notch1 protein in the AngⅡ (10, 20, and 40 nmol/L) groups (0.20±0.02, 0.54±0.04, 0.82±0.03) were significantly higher than those in the normal control group (0.11±0.02). (F = 400.50, P < 0.01). After Notch1 interference, CCK8 results showed that the A450 values in the siRNA-Notch1+AngⅡ group (10, 20, 40 nmol/ L) were (0.53±0.06), (0.83±0.03), (1.03±0.03), which was significantly lower than that in the siRNA-NC+AngⅡ control group (0.97±0.06), (1.43±0.06), (1.73±0.06) (P < 0.01). Further Western Blot results showed that the Notch1, HES1 and Sox2 protein expression levels in the Notch1 knockdown group (AngⅡ+siRNA-Notch1) (1.47±0.12, 0.77±0.06, 0.50±0.10) were significantly decreased, compared with the AngII control group (2.83±0.15, 2.20±0.10, 1.17 ± 0.06) (P < 0.01).

Conclusion

AngⅡpromote the proliferation of HSCs by activating Notch1/Sox2.

表1 不同浓度AngⅡ处理后CCK8检测LX2细胞A450值比较(±s
表2 不同浓度AngⅡ处理后消化法检测LX2细胞羟脯氨酸浓度(mg/L,±s
图1 AngⅡ对肝星状细胞胞Notch1蛋白表达的影响
表3 不同浓度AngⅡ诱导Notch1干扰前后的肝星状细胞增殖率A450的变化(nmol/L ,±s
表4 干扰Notch1AngⅡ诱导的肝星状细胞蛋白表达的变化(±s
图2 干扰Notch1和AngⅡ对人肝星状细胞蛋白表达的影响
1
Zhang CY, Yuan WG, He P, et al. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets[J]. World J Gastroenterol, 2016, 22(48):10512-10522.
2
Debray D, Mas E, Munck A, et al. Liver disease, gastrointestinal complications, nutritional management and feeding disorders in pediatric cystic fibrosis[J]. Arch Pediatr, 2016, 23(12S):12S15-12S20.
3
Xu M, Zhang F, Wang A, et al. Tumor necrosis Factor-Like weak inducer of apoptosis promotes hepatic stellate cells migration via canonical NF-κB/MMP9 pathway[J]. PLoS One, 2016, 11(12):e0167658.
4
Cheng CF, Pan TM. Ankaflavin and monascin induce apoptosis in activated hepatic stellate cells through suppression of the Akt/NF-κB/ p38 signaling pathway[J]. J Agric Food Chem, 2016, 64(49):9326-9334.
5
Miloradović Z, Ivanov M, Jovović Đ, et al. Angiotensin 2 type 1 receptor blockade different affects postishemic kidney injury in normotensive and hypertensive rats[J]. J Physiol Biochem, 2016, 72(4):813-820.
6
Wu Z, Wang Z, Dai F, et al. Dephosphorylation of Y685-VE-Cadherin involved in pulmonary microvascular endothelial barrier injury induced by angiotensin Ⅱ[J]. Mediators Inflamm, 2016 (2):8696481.
7
Li Z, Shen Z, Du L, et al. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin Ⅱ[J]. Am J Transl Res, 2016, 8(12):5386-5398.
8
Namsen R, Rojanasthien N, Sireeratawong S, et al. Thunbergia laurifolia Exhibits Antifibrotic Effects in Human Hepatic Stellate Cells[J]. Evid Based Complement Alternat Med, 2017, 4: 1-9.
9
Li Q, Li X, Deng CL. Induction of proliferation and activation of rat hepatic stellate cells via high glucose and high insulin[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5420-5429.
10
Bian EB, Wang YY, Yang Y, et al. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver[J]. Biochim Biophys Acta, 2017, 1863(3):674-686.
11
Cai SP, Cheng XY, Chen PJ, et al. Transmembrane protein 88 attenuates liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells[J]. Mol Immunol, 2016, 80:58-67.
12
Villalobos LA, San Hipólito-Luengo Á, Ramos-González M, et al. The angiotensin-(1-7)/Mas axis counteracts angiotensinⅡ-Dependent and -Independent pro-inflammatory signaling in human vascular smooth muscle cells[J]. Front Pharmacol, 2016, 7:482.
13
Pavo N, Wurm R, Goliasch G, et al. Renin-Angiotensin system fingerprints of heart failure with reduced ejection fraction[J]. J Am Coll Cardiol, 2016, 68(25):2912-2914.
14
Königshausen E, Zierhut UM, Ruetze M, et al. Angiotensin Ⅱ increases glomerular permeability by β-arrestin mediated nephrin endocytosis[J]. Sci Rep, 2016, 6:39513.
15
He P, Yu ZJ, Sun CY, et al. Knockdown of HIPK2 attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1[J]. Biomedicine & Pharmacotherapy, 2017, 85:575-581.
16
Gao R, Chen R, Cao Y, et al. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway[J]. Toxicol Appl Pharmacol, 2017, 318:1-7.
17
Huang T, Zhou Y, Cheng AS, et al. NOTCH1 receptors in gastric and other gastrointestinal cancers:oncogenes or tumor suppressors?[J]. Mol Cancer, 2016, 15(1):80.
18
Deng SM, Yan XC, Liang L, et al. The notch ligand delta-like 3 promotes tumor growth and inhibits notch signaling in lung cancer cells in mice[J]. Biochem Biophys Res Commun, 2017, 483(1):488-494.
19
Miller TJ, Mccoy MJ, Hemmings C, et al. The prognostic value of cancer stem-like cell markers SOX2 and CD133 in stage Ⅲ colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and CD3[J]. Pathology, 2017, 49(7):721-730.
20
Mukherjee P, Gupta A, Chattopadhyay D, et al. Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells[J]. Sci Rep, 2017, 7(1):9170.
[1] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[2] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J/OL]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[3] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[4] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[5] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[6] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[7] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[8] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[9] 吴亚萍, 吴颖. miR-340-5p调控PDE4D表达对胃癌细胞顺铂耐药性的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 346-354.
[10] 刘佳, 付丽, 杨月美. miR-138-5p调节HIF-1α/Notch1轴对滋养层细胞侵袭和血管生成的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 277-287.
[11] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[12] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[13] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[14] 邵文哲, 孙倩男, 王道荣. Galectin-9在结直肠癌中的表达及其临床意义[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(02): 112-120.
[15] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J/OL]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
阅读次数
全文


摘要