1 |
Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer[J]. Lancet Lond Engl, 1969, 1(7606):1119-1122.
|
2 |
Breman AM, Chow JC, U'ren L, et al. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing[J]. Prenat Diagn, 2016, 36(11):1009-1019.
|
3 |
Bianchi DW, Zickwolf GK, Weil GJ, et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum[J]. Proc Natl Acad Sci U S A, 1996, 93(2):705-708.
|
4 |
Belay E, Hayes BJ, Blau CA, et al. Human cord blood and bone marrow CD34+cells generate macrophages that support erythroid islands[J]. PLoS One, 2017, 12(1):e0171096.
|
5 |
Manotaya S, Elias S, Lewis DE, et al. Evaluation of a culture system for enrichment of CD34+hematopoietic progenitor cells present in maternal blood[J]. Fetal Diagn Ther, 2002, 17(2):90-96.
|
6 |
Choolani M, Mahyuddin AP, Hahn S. The promise of fetal cells in maternal blood[J]. Best Pract Res Clin Obstet Gynaecol, 2012, 26(5):655-667.
|
7 |
Lim KH, Salahuddin S, Qiu L, et al. Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: May Lead to noninvasive prenatal diagnosis[J]. Opt Lett, 2009, 34(9):1483-1485.
|
8 |
Kaur I, Zulovich JM, Gonzalez M, et al. Comparison of two methodologies for the enrichment of mononuclear cells from thawed cord blood products: The automated Sepax system versus the manual Ficoll method[J]. Cytotherapy, 2017, 19(3):433-439.
|
9 |
Emad A, Drouin R. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood[J]. Prenat Diagn, 2014, 34(9):878-885.
|
10 |
Smits G, Holzgreve W, Hahn S. An examination of different Percoll density gradients and magnetic activated cell sorting(MACS)for the enrichment of fetal erythroblasts from maternal blood[J]. Arch Gynecol Obstet, 2000, 263(4):160-163.
|
11 |
Troeger C, Holzgreve W, Hahn S. A comparison of different density gradients and antibodies for enrichment of fetal erythroblasts by MACS[J]. Prenat Diagn, 1999, 19(6):521-526.
|
12 |
Cheng N, Liu F, Zhang LA, et al. Enrichment of nuclear red blood cells by membrane KCC transporter with Urea intervention[J]. J Clin Lab Anal, 2011, 25(1):1-7.
|
13 |
Kwon KH, Jeon YJ, Hwang HS, et al. A high yield of fetal nucleated red blood cells isolated using optimal osmolality and a double-density gradient system[J]. Prenat Diagn, 2007, 27(13):1245-1250.
|
14 |
Sitar G, Manenti L, Farina A, et al. Characterization of the biophysical properties of human erythroblasts as a preliminary step to the isolation of fetal erythroblasts from maternal peripheral blood for non invasive prenatal genetic investigation[J]. Haematologica, 1997, 82(1):5-10.
|
15 |
Andrews K, Wienberg J, Ferguson-Smith MA, et al. Enrichment of fetal nucleated cells from maternal blood:model test system using cord blood[J]. Prenat Diagn, 1995, 15(10):913-919.
|
16 |
Al-Mufti R, Hambley H, Farzaneh F, et al. Assessment of efficacy of cell separation techniques used in the enrichment of foetal erythroblasts from maternal blood: triple density gradient vs. single density gradient[J]. Clin Lab Haematol, 2004, 26(2):123-128.
|
17 |
Boskabadi H, Zakerihamidi M, Sadeghian M H, et al. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(21):2551-2556.
|
18 |
Giambona A, Damiani G, Leto F, et al. Embryo-fetal erythroid cell selection from celomic fluid allows earlier prenatal diagnosis of hemoglobinopathies[J]. Prenat Diagn, 2016, 36(4):375-381.
|
19 |
Watanabe A, Sekizawa A, Taguchi A, et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood[J]. Hum Genet, 1998, 102(6):611-615.
|
20 |
Sekizawa A, Kimura T, Sasaki M, et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood[J]. Neurology, 1996, 46(5):1350-1353.
|
21 |
Liu WY, Jin CL, Liu LY, et al. Detection of fetal nucleated red blood cells in the maternal circulation by Kleihauer test[J]. Yi Chuan, 2007, 29(3):289-292.
|
22 |
Nagy GR, Bán Z, Sipos F, et al. Isolation of epsilon-haemoglobin-chain positive fetal cells with micromanipulation for prenatal diagnosis[J]. Prenat Diagn, 2005, 25(5):398-402.
|
23 |
Oosterwijk JC, Knepflé CF, Mesker WE, et al. Strategies for rare-event detection:an approach for automated fetal cell detection in maternal blood[J]. Am J Hum Genet, 1998, 63(6):1783-1792.
|
24 |
Kolialexi A, Vrettou C, Traeger-Synodinos J, et al. Noninvasive prenatal diagnosis of beta-thalassaemia using individual fetal erythroblasts isolated from maternal blood after enrichment[J]. Prenat Diagn, 2007, 27(13):1228-1232.
|
25 |
Collarini EJ, Cain CA, Gammon D, et al. Comparison of methods for erythroblast selection:application to selecting fetal erythroblasts from maternal blood[J]. Cytometry, 2001, 45(4):267-276.
|
26 |
Mohamed H, Turner JN, Caggana M. Biochip for separating fetal cells from maternal circulation[J]. J Chromatogr A, 2007, 1162(2):187-192.
|
27 |
Huang R, Barber TA, Schmidt MA, et al. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women[J]. Prenat Diagn, 2008, 28(10):892-899.
|
28 |
Lee D, Sukumar P, Mahyuddin A, et al. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device[J]. J Chromatogr A, 2010, 1217(11):1862-1866.
|
29 |
Byeon Y, Ki CS, Han KH. Isolation of nucleated red blood cells in maternal blood for Non-invasive prenatal diagnosis[J]. Biomed Microdevices, 2015, 17(6):118.
|
30 |
Wachtel SS, Sammons D, Twitty G, et al. Charge flow separation: quantification of nucleated red blood cells in maternal blood during pregnancy[J]. Prenat Diagn, 1998, 18(5):455-463.
|
31 |
Borgatti M, Bianchi N, Mancini I, et al. New trends in non-invasive prenatal diagnosis: applications of dielectrophoresis-based Lab-on-a-chip platforms to the identification and manipulation of rare cells[J]. Int J Mol Med, 2008, 21(1):3-12.
|
32 |
Huber K, Wolf H, Van Lindern M, et al. Development of a rapid means of estimating the haemoglobin F content of candidate fetal cells isolated from maternal blood using HPLC[J]. Prenat Diagn, 1996, 16(11):1011-1019.
|
33 |
Zimmermann S, Hollmann C, Stachelhaus SA. Unique monoclonal antibodies specifically bind surface structures on human fetal erythroid blood cells[J]. Exp Cell Res, 2013, 319(17):2700-2707.
|
34 |
Zheng SX, Tong XH, Wu LM, et al. A comparison of in vitro culture of fetal nucleated erythroblasts from fetal chorionic villi and maternal peripheral blood for noninvasive prenatal diagnosis[J]. Fetal Diagn Ther, 2012, 32(3):194-200.
|
35 |
Kanda E, Yura H, Kitagawa M. Practicability of prenatal testing using lectin-based enrichment of fetal erythroblasts[J]. J Obstet Gynaecol Res, 2016, 42(8):918-926.
|
36 |
Jansen MW, von Lindern M, Beug H, et al. The use of in vitro expanded erythroid cells in a model system for the isolation of fetal cells from maternal blood[J]. Prenat Diagn, 1999, 19(4):323-329.
|
37 |
Pongsritasana T, Wongratanacheewin S, Prasertcharoensuk V, et al. Isolation of fetal nucleated red blood cell from maternal blood using immunomagnetic beads for prenatal diagnosis[J]. Asian Pac J Allergy Immunol, 2006, 24(1):65-71.
|
38 |
Giambona A, Leto F, Damiani G, et al. Identification of embryo-fetal cells in celomic fluid using morphological and short-tandem repeats analysis[J]. Prenat Diagn, 2016, 36(10):973-978.
|
39 |
D'souza E, Sawant PM, Nadkarni AH, et al. Evaluation of the use of monoclonal antibodies and nested PCR for noninvasive prenatal diagnosis of hemoglobinopathies in India[J]. Am J Clin Pathol, 2008, 130(2):202-209.
|
40 |
D'souza E. Ghosh K, colah R. A comparison of the choice of monoclonal antibodies for recovery of fetal cells from maternal blood using FACS for noninvasive prenatal diagnosis of hemoglobinopathies[J]. Cytometry B Clin Cytom, 2009, 76(3):175-180.
|
41 |
D'souza E, Kulkarni S, Colah RB, et al. An improved flow cytometric approach for isolation of fetal cells from maternal blood for non invasive prenatal diagnosis of hemoglobinopathies[J]. Hemoglobin, 2007, 31(1):39-48.
|
42 |
Babochkina T, Mergenthaler S, Lapaire O, et al. Evaluation of a soybean lectin-based method for the enrichment of erythroblasts[J]. J Histochem Cytochem, 2005, 53(3):329-330.
|
43 |
Han JY, Je GH, Kim IH, et al. Culture of fetal erythroid cells from maternal blood using a two-phase liquid system[J]. Am J Med Genet, 1999, 87(1):84-85.
|
44 |
Huber K, Bittner J, Worofka B, et al. Quantitative FISH analysis and in vitro suspension cultures of erythroid cells from maternal peripheral blood for the isolation of fetal cells[J]. Prenat Diagn, 2000, 20(6):479-486.
|
45 |
Huang Z, Fong CY, Gauthaman K, et al. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child[J]. J Cell Biochem, 2011, 112(6):1475-1485.
|
46 |
Ai-Mufti R, Hambley H, Farzaneh F, et al. Distribution of fetal erythroblasts in maternal blood after chorionic villous sampling[J]. BJOG, 2003, 110(1):33-38.
|
47 |
Purwosunu Y, Sekizawa A, Farina A, et al. Enrichment of NRBC in maternal blood:a more feasible method for noninvasive prenatal diagnosis[J]. Prenat Diagn, 2006, 26(6):545-547.
|
48 |
Ponnusamy S, Mohammed N, Ho SS, et al. In vivo model to determine fetal-cell enrichment efficiency of novel noninvasive prenatal diagnosis methods[J]. Prenat Diagn, 2008, 28(6):494-502.
|
49 |
Fournier D, Simard C, Cloutier M, et al. Implementing a routine flow cytometry assay for nucleated red blood cell counts in cord blood units[J]. Transfusion, 2015, 55(3, SI):49A-50A.
|
50 |
Beaudet AL. Using fetal cells for prenatal diagnosis: history and recent progress[J]. Am J Med Genet C Semin Med Genet, 2016, 172(2, SI):123-127.
|