1 |
Kamran SC, Riaz N, Lee N. Nasopharyngeal carcinoma[J]. Surg Oncol Clin N Am, 2015, 24(3):547-561.
|
2 |
Lee AW, Sze WM, Au JS et al. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience[J]. Int J Radiat Oncol Biol Phys, 2005, 61(4):1107-1116.
|
3 |
Li J, Zou X, Wu YL, et al. A comparison between the sixth and seventh editions of the UICC/AJCC staging system for nasopharyngeal carcinoma in a Chinese cohort[J]. PLoS One, 2014, 9(12):e116261. doi: 10.1371/journal.pone.0116261.
|
4 |
Viswanadha R, Sale WS, Porter ME. Ciliary motility: regulation of axonemal dynein motors[J]. Cold Spring Harb Perspect Biol, 2017, 9(8):a018325. doi: 10.1101/cshperspect.a018325.
|
5 |
Parris TZ, Danielsson A, Nemes S, et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma[J]. Clin Cancer Res, 2010, 16(15):3860-3874.
|
6 |
Tian W, Li Y, Zhang J, et al. Combined analysis of DNA methylation and gene expression profiles of osteosarcoma identified several prognosis signatures[J]. Gene, 2018, 650:7-14.
|
7 |
马苑, 付秀华, 王立红. 肿瘤缺氧微环境的研究进展[J]. 癌症进展, 2020, 18(2):109-112+147.
|
8 |
Mantel CR, O'Leary HA, Chitteti BR, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock[J]. Cell, 2015, 161(7):1553-1565.
|
9 |
Lin J, Wang Y, Lin Z. HAX1 maintains the glioma progression in hypoxia through promoting mitochondrial fission[J]. J Cell Mol Med, 2021, 25(24):11170-11184.
|
10 |
黄培钰, 张力, 洪明晃. 鼻咽癌的化疗现状[J]. 实用肿瘤杂志, 2004, 19(4):277-281.
|
11 |
欧阳曙光, 贺福初. 生物信息学:生物实验数据和计算技术结合的新领域[J]. 科学通报, 1999, 44(14):1457-1468.
|
12 |
Ye Z, Wang F, Yan F, et al. Bioinformatic identification of candidate biomarkers and related transcription factors in nasopharyngeal carcinoma[J]. World J Surg Oncol.2019, 17(1):60. doi: 10.1186/s12957-019-1605-9.
|
13 |
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019, 18(1):157. doi: 10.1186/s12943-019-1089-9.
|
14 |
Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment[J]. Nat Rev Clin Oncol, 2021, 18(12):751-772.
|
15 |
Xueguan L, Xiaoshen W, Yongsheng Z, et al. Hypoxia inducible factor-1 alpha and vascular endothelial growth factor expression are associated with a poor prognosis in patients with nasopharyngeal carcinoma receiving radiotherapy with carbogen and nicotinamide[J]. Clin Oncol, 2008, 20(8):606-612.
|
16 |
Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1 supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes[J]. Oncogene, 2014, 33(37):4613-4622.
|
17 |
Choksi SP, Lauter G, Swoboda P, et al. Switching on cilia: transcriptional networks regulating ciliogenesis[J]. Development, 2014, 141(7):1427-1441.
|
18 |
Yu X, Ng CP, Habacher H, et al. Foxj1 transcription factors are master regulators of the motile ciliogenic program[J]. Nature Genetics, 2008, 40(12):1445-1453.
|
19 |
Sela U, Dayan M, Hershkoviz R, et al. The negative regulators Foxj1 and Foxo3a are up-regulated by a peptide that inhibits systemic lupus erythematosus-associated T cell responses[J]. Eur J Immunol, 2006, 36(11):2971-2980.
|
20 |
蔡斌, Hogg David, 路光中, 等. 不同分化级别子宫内膜癌差异表达基因探讨[J]. 中国肿瘤临床, 2007, 18:1033-1035.
|
21 |
Wang J, Cai X, Xia L, et al. Decreased expression of FOXJ1 is a potential prognostic predictor for progression and poor survival of gastric cancer[J]. Ann Surg Oncol, 2015, 22(2):685-692.
|
22 |
Caron A, Xu X, Lin X. Wnt/β-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer's vesicle[J]. Development, 2012, 139(3):514-524.
|