切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (03) : 189 -192. doi: 10.3877/cma.j.issn.2095-1221.2021.03.009

综述

生物光学成像技术在干细胞应用中的研究进展
周影1, 周春根1, 江滨2,()   
  1. 1. 210029 南京中医药大学
    2. 210022 南京中医药大学附属南京中医院
  • 收稿日期:2021-03-05 出版日期:2021-06-01
  • 通信作者: 江滨
  • 基金资助:
    江苏省卫生和计划生育委员会委科研课题(ZDB202002); 江苏省研究生科研与实践创新计划(SJCX21_0747)

Advances in optical imaging technology for stem cell application

Ying Zhou1, Chungen Zhou1, Bin Jiang2,()   

  1. 1. Nanjing University of Chinese Medicine, Nanjing 210029, China
    2. Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
  • Received:2021-03-05 Published:2021-06-01
  • Corresponding author: Bin Jiang
引用本文:

周影, 周春根, 江滨. 生物光学成像技术在干细胞应用中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 189-192.

Ying Zhou, Chungen Zhou, Bin Jiang. Advances in optical imaging technology for stem cell application[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(03): 189-192.

干细胞目前已应用在多种疾病的治疗中,前景十分广阔,但干细胞存活、分布和迁移等具体机制仍未明确,需要通过长期有效、无副作用的干细胞示踪技术进一步研究。生物光学成像(OI)技术与干细胞相结合,操作简单、成像直观,并有高灵敏度和高特异性,可以实时、无创监测干细胞在动物活体内的生物学活动。本文就OI示踪技术的原理及其在干细胞应用中的研究进展做一综述。

Recently, stem cell therapy has emerged as an effective therapeutic approach in various area, however, the specific mechanism of stem cell survival, distribution and migration remains unclear, which needs to be further studied by long-term effective stem cell tracer technology without any side effects. Bio-optical imaging technologycan detect biological activities in living animals in real time noninvasively, andit is simple in operation and intuitive in imaging with high sensitivity and specificity. This article reviews the fundamental of optical imaging (OI) tracer technique and its application in stem cell therapy.

1
江滨,时宏珍,史央, 等. 自体脂肪干细胞移植治疗复杂性肛瘘的临床观察[J/CD]. 中华结直肠疾病电子杂志, 2019, 8(6):566-573.
2
Morizane A. [Cell therapy for Parkinson's disease with induced pluripotent stem cells][J]. Rinsho Shinkeigaku, 2019, 59(3):119-124.
3
El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis[J]. PLoS One, 2016,11(4):e151938.doi: 10.1371/journal.pone.0151938.
4
Chen IY, Greve JM, Gheysens O, et al. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation[J]. Mol Imaging Biol, 2009,11(3):178-187.
5
Danhier P, De Preter G, Magat J, et al. Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence[J]. Contrast Media Mol Imaging, 2014,9(2):143-153.
6
Puaux AL, Ong LC, Jin Y, et al. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals[J]. Int J Mol Imaging, 2011, 2011:321538.doi: 10.1155/2011/321538.
7
Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes[J]. J Biomed Opt, 2001, 6(4):432-440.
8
Gangadaran P, Li XJ, Lee HW, et al. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice[J]. Oncotarget, 2017, 8(66):109894-109914.
9
Yan Y, Shi P, Song W, et al. Chemiluminescence and bioluminescence imaging for biosensing and therapy: in vitro and in vivo perspectives[J]. Theranostics, 2019, 9(14):4047-4065.
10
Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma[J]. Theranostics, 2017,7(10):2732-2745.
11
Petkov S, Starodubova E, Latanova A, et al. DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response[J]. PLoS One, 2018,13(6):e197902.doi: 10.1371/journal.pone.0197902.
12
Desai M, Di R, Fan H. Application of biolayer interferometry (BLI) for studying protein-protein interactions in transcription[J]. J Vis Exp, 2019(149):e59687. doi: 10.3791/59687.
13
Sultan MT, Choi BY, Ajiteru O, et al. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septalapproach[J]. Biomaterials, 2021, 266:120413.doi: 10.1016/j.biomaterials.2020.120413.
14
Sheyn D, Cohn-Yakubovich D, Ben-David S, et al. Bone-chip system to monitor osteogenic differentiation using optical imaging[J]. MicrofluidNanofluidics, 2019, 23(8):99. doi: 10.1007/s10404-019-2261-7.
15
Chen G, Lin S, Huang D, et al. Revealing the Fate of transplanted stem cells in vivo with a novel optical imaging strategy[J]. Small, 2018,14(3).doi: 10.1002/smll.201702679.
16
Cao J, Li X, Chang N, et al. Dual-modular molecular imaging to trace transplanted bone mesenchymal stromal cells in an acute myocardial infarction model[J]. Cytotherapy, 2015,17(10):1365-1373.
17
Daadi MM, Li Z, Arac A, et al. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain[J]. MolTher, 2009,17(7):1282-1291.
18
Oh HJ, Hwang DW, Youn H, et al. In vivo bioluminescence reporter gene imaging for the activation of neuronal differentiation induced by the neuronal activator neurogenin 1 (Ngn1) in neuronal precursor cells[J]. Eur J Nucl Med Mol Imaging, 2013, 40(10):1607-1617.
19
Kern I, Xu R, Julien S, et al. Embryonic stem cell-based screen for small molecules: cluster analysis reveals four response patterns in developing neural cells[J]. Curr Med Chem, 2013, 20(5):710-723.
20
Xu R, Feyeux M, Julien S, et al. Screening of bioactive peptides using an embryonic stem cell-based neurodifferentiation assay[J]. AAPS J, 2014, 16(3):400-412.
21
Lee ES, Kim TS, Kim SK. Current status of optical imaging for evaluating lymph nodes and lymphatic system[J]. Korean J Radiol, 2015, 16(1):21-31.
22
Alam MK, El-Sayed A, Barreto K, et al. Site-specific fluorescent labeling of antibodies and diabodies using SpyTag/SpyCatcher system for in vivo optical imaging[J]. Mol Imaging Biol, 2019, 21(1):54-66.
23
Kalinina MA, Skvortsov DA, Rubtsova MP, et al. Cytotoxicity test based on human cells labeled with fluorescent proteins: fluorimetry, photography, and scanning for high-throughput assay[J]. Mol Imaging Biol, 2018, 20(3):368-377.
24
Carr JA, Franke D, Caram JR, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proc Natl Acad Sci U S A, 2018, 115(17):4465-4470.
25
Lin KM, Hsu CH, Chang WS, et al. Human breast tumor cells express multimodal imaging reporter genes[J]. Mol Imaging Biol, 2008, 10(5):253-263.
26
Mostafavi H, Ghassemifard L, Rostami A, et al. Trabecular meshwork mesenchymal stem cell transplantation improve motor symptoms ofparkinsonian rat model[J]. Biologicals, 2019, 61:61-67.
27
Gubin AN, Reddy B, Njoroge JM, et al. Long-term, stable expression of green fluorescent protein in mammalian cells[J]. Biochem Biophys Res Commun, 1997, 236(2):347-350.
28
Persons DA, Allay JA, Allay ER, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo[J]. Blood, 1997, 90(5):1777-1786.
29
余璞,龙海,霍金龙, 等. 体外传代对版纳微型猪骨髓间充质干细胞绿色荧光蛋白表达的影响[J/CD]. 中华细胞与干细胞杂志(电子版), 2016, 6(6):363-368.
30
Zhan Y, Wang Y, Wei L, et al. Differentiation of hematopoietic stem cells into hepatocytes in liver fibrosis in rats[J]. Transplant Proc, 2006, 38(9):3082-3085.
31
杨青,秦书俭,包翠芬, 等. 两种示踪方式的骨髓间充质干细胞在促进肝缺血再灌注损伤修复中的对比研究[J]. 中国临床解剖学杂志, 2016, 34(3):312-317.
32
Li K, Chan CT, Nejadnik H, et al. Ferumoxytol-based Dual-modality imaging probe for detection of stem cell transplant rejection[J]. Nanotheranostics, 2018, 2(4):306-319.
33
Grady ST, Britton L, Hinrichs K, et al. Persistence of fluorescent nanoparticle-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection[J]. J Tissue EngRegen Med, 2019,13(2):191-202.
34
Ntziachristos V, Ripoll J, Weissleder R. Would near-infrared fluorescence signals propagate through large human organs for clinical studies?[J]. Opt Lett, 2002, 27(5):333-335.
35
Xu R, Bai Y, Min S, et al. In vivo monitoring and assessment of exogenous mesenchymal stem cell-derived exosomes in mice with ischemic stroke by molecular imaging[J]. Int J Nanomedicine, 2020, 15:9011-9023.
36
Chen D, Li Q, Meng Z, et al. Bright polymer dots tracking stem cell engraftment and migration to injured mouse liver[J]. Theranostics, 2017, 7(7):1820-1834.
37
Dehua H, Suying L, Qianwu W, et al. An NIR-II fluorescence/Dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells[J]. Advanced Functional Materials, 2019, 29(2):1806546.doi:org/10.1002/adfm.201806546.
38
Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review[J]. Adv Colloid Interface Sci, 2020, 278:102137.doi:10.1016/j.cis.2020.102137.
39
Valluru KS, Willmann JK. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 2016, 35(4):267-280.
40
Kim T, Lemaster JE, Chen F, et al. Photoacoustic imaging of human mesenchymal stem cells labeled with prussian blue-poly(l-lysine) nanocomplexes[J]. ACS Nano, 2017, 11(9):9022-9032.
41
Cai W, Sun J, Sun Y, et al. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure[J]. Biomater Sci, 2020,8(23):6592-6602.
42
Kubelick KP, Emelianov S Y. In vivo photoacoustic guidance of stem cell injection and delivery for regenerative spinal cord therapies[J]. Neurophotonics, 2020, 7(3):30501.doi: 10.1117/1.NPh.7.3.030501.
43
Yao M, Shi X, Zuo C, et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia[J]. ACS Appl Mater Interfaces, 2020, 12(34):37885-37895.
44
Li W, Chen R, Lv J, et al. In vivo photoacoustic imaging of brain injury and rehabilitation by high-efficient near-infrared dye labeled mesenchymal stem cells with enhanced brain barrier permeability[J]. AdvSci (Weinh), 2017, 5(2):1700277.doi:10.1002/advs.201700277.
45
Xu C, Feng Q, Yang H, et al. A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer[J]. AdvSci (Weinh), 2018,5(10):1800382.doi:10.1002/advs.201800382.
46
Qin X, Chen H, Yang H, et al. Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles[J]. Adv Funct Mater, 2018, 28(1):1704939. doi:10.1002/adfm.201704939.
47
Dhada KS, Hernandez DS, Suggs L J. In vivo photoacoustic tracking of mesenchymal stem cell viability[J]. ACS Nano, 2019,13(7):7791-7799.
48
Kubelick KP, Snider EJ, Ethier CR, et al. Development of a stem cell tracking platform for ophthalmic applications using ultrasound and photoacoustic imaging[J]. Theranostics, 2019, 9(13):3812-3824.
49
Yang C. Molecular contrast optical coherence tomography: a review[J]. Photochem Photobiol, 2005, 81(2):215-237.
50
Yaqoob Z, McDowell E, Wu J, et al. Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent[J]. J Biomed Opt, 2006,11(5):54017.doi:10.1117/1.2360525.
51
Rey S M, Povazay B, Hofer B, et al. Three-and four-dimensional visualization of cell migration using optical coherence tomography[J]. J Biophotonics, 2009,2(6-7):370-379.
52
Li X, Zhang W, Wang WY, et al. Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers[J]. Biomed Opt Express, 2020,11(7):3659-3672.
53
Altschwager P, Ambrosio L, Swanson EA, et al. Juvenile macular degenerations[J]. Semin Pediatr Neurol, 2017, 24(2):104-109.
54
Banayan N, Georgeon C, Grieve K, et al. Spectral-domain optical coherence tomography in limbal stem cell deficiency. A case-control Study[J]. Am J Ophthalmol, 2018, 190:179-190.
55
Binotti WW, Nose RM, Koseoglu ND, et al. The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency[J]. Ocul Surf, 2021, 19:94-103.
56
Gurjarpadhye AA, DeWitt MR, Xu Y, et al. Dynamic assessment of the endothelialization of tissue-engineered blood vessels using an optical coherence tomography catheter-based fluorescence imaging system[J]. Tissue Eng Part C Methods, 2015, 21(7):758-766.
57
Wilson BC, Vitkin IA, Matthews DL. The potential of biophotonic techniques in stem cell tracking and monitoring of tissue regeneration applied to cardiac stem cell therapy[J]. J Biophotonics, 2009, 2(11):669-681.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[5] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[6] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[7] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[8] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[9] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 王佳凤, 郭锐, 陈倩倩, 李惠凯, 宁波, 袁新普, 朱华, 令狐恩强. 68Ga-NC-BCH联合PET-CT淋巴结免疫示踪对于胃癌患者术前及术后临床决策影响的初步探索研究[J]. 中华胃肠内镜电子杂志, 2023, 10(04): 253-257.
阅读次数
全文


摘要