切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 265 -270. doi: 10.3877/cma.j.issn.2095-1221.2020.05.002

所属专题: 文献

论著

生长分化因子11对甲醛诱导的海马神经细胞凋亡的影响
职瑾1,(), 段斌2, 吴松笛1, 王清1   
  1. 1. 710002 西安市第一医院神经内科
    2. 710002 西安,陕西省人民医院肾病血透中心
  • 收稿日期:2019-05-21 出版日期:2020-10-01
  • 通信作者: 职瑾

Effect of GDF11 on formaldehyde-induced apoptosis in HT22 cells

Jin Zhi1,(), Bin Duan2, Songdi Wu1, Qing Wang1   

  1. 1. Internal Medicine, Xi'an No.1 Hospital, Xi'an 710002, China
    2. Nephrotic Hemodialysis Center, Shanxi Provincial People's Hospital, Xi'an 710002, China
  • Received:2019-05-21 Published:2020-10-01
  • Corresponding author: Jin Zhi
  • About author:
    Corresponding author:Zhi Jin, Email:
引用本文:

职瑾, 段斌, 吴松笛, 王清. 生长分化因子11对甲醛诱导的海马神经细胞凋亡的影响[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(05): 265-270.

Jin Zhi, Bin Duan, Songdi Wu, Qing Wang. Effect of GDF11 on formaldehyde-induced apoptosis in HT22 cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(05): 265-270.

目的

探讨生长分化因子11(GDF11)对甲醛诱导的海马神经(HT22)细胞毒性的影响。

方法

把HT22细胞分为对照组(细胞未做任何处理)、甲醛组(50、100、200 μmol/ L甲醛处理细胞)和GDF11+甲醛组(GDF11转染细胞后用100 μmol/L甲醛处理)。细胞计数试剂盒(CCK8)法检测HT22细胞的活力;蛋白免疫印迹法检测HT22细胞凋亡相关蛋白Bax以及Bcl-2的变化;caspase-3活性检测试剂盒检测HT22细胞内caspase-3活性;DCFDA染色流式细胞仪检测HT22细胞中活性氧(ROS)水平。三组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与对照组比较,甲醛组HT22细胞活力(92.23±0.20比56.12±0.61)和Bcl-2蛋白表达(220.32±2.21比150.25±0.31)水平均降低,差异具有统计学意义(P均< 0.05);而caspase-3活性(95.36±1.74比190.17±2.14)、Bax蛋白表达(132.19±1.21比150.17±1.06)和ROS水平(1099.32±75.47比2802.17±126.49)均升高,差异具有统计学意义(P均< 0.05)。GDF11转染HT22细胞后,与甲醛组比较,GDF11+甲醛组HT22细胞活力升高(56.12±0.61比83.11±1.64),Bax蛋白表达(270.03±0.17比150.17±1.06)降低,Bcl-2蛋白表达(150.25±0.31比187.34±1.52)升高,caspase-3活性降低(190.17±2.14比105.31±4.12)和ROS水平降低(2802.17±126.49比1305.36±68.45),差异具有统计学意义(P均< 0.05)。

结论

GDF11能够逆转甲醛对HT22细胞凋亡的诱导作用以及降低甲醛对HT22细胞ROS水平的增加作用,此机制对防治甲醛的神经毒性具有重要意义。

Objective

To investigate effect of GDF11 on formaldehyde-induced cytotoxicity in HT22 cells.

Methods

HT22 cells were divided into control group (cells without any treatment) , formaldehyde (FA) group (50, 100, 200 μmol/L formaldehyde respectively treated cells) and GDF11+FA group (GDF11 transfected cells and 100 μmol/L formaldehyde respectively treated cells) . Cell counting box (CCK8) was used to detect the viability of HT22 cells, and Western Blotting was used to detect the changes of apoptosis-related proteins Bax and Bcl-2 in HT22 cells. Caspase-3 activity in HT22 cells was detected by caspase-3 activity detection kit, and reactive oxygen species (ROS) level in HT22 cells was detected by flow cytometry (FCM) after DCFDA staining. One-way analysis was used to compare the differences among three groups.

Results

Compared with control group, the viability of HT22 cells (56.12±0.61 vs 92.23±0.20) and the expression level of Bcl-2 protein (220.32±2.21 vs 150.25±0.31) were decreased in the FA group (P < 0.05) . Caspase-3 activity (95.36±1.74 vs 190.17±2.14) , and the expression levels of Bax protein (132.19±1.21 vs 150.17±1.00) and ROS (1099.32±75.47 vs 2802.17±126.49) were significantly higher (P < 0.05) . After transfection of HT22 cells with GDF11, compared with FA group, the viability of HT22 cells in the GDF11+FA group was increased (56.12±0.61 vs 83.11±1.64) , the expression of Bax protein decreased (270.03±0.17 vs 150.17±1.06) , the expression of Bcl-2 protein increased (150.25±0.31 vs 187.34±1.52) , caspase-3 activity decreased (190.17±2.14 vs 105.31±4.12) , and the ROS level decreased (2802.17±126.49 vs 1305.36±68.45) . The difference was statistically significant (all P < 0.05) .

Conclusion

GDF11 can prevent formaldehyde-induced apoptosis and reduce ROS production in HT22 cells, which is of great significance in preventing and treating the neurotoxicity of formaldehyde.

图1 GDF11转染后HT22细胞中GDF11蛋白表达的情况
图2 不同浓度甲醛干预对HT22细胞活力的影响
表1 GDF11对甲醛干预的HT22细胞活力及Bax和Bcl-2蛋白表达灰度值的影响( ± s
图3 GDF11对甲醛干预的HT22细胞Bax和Bcl-2蛋白表达水平的影响
图4 对照组、甲醛组和GDF11 +甲醛组活性氧水平
1
Lu K, Ye WJ, Zhou L, et al. Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers[J]. J Am Chem Soc, 2010, 132(10):3388-3399.
2
Athanassiadis B, George GA, Abbott PV, et al. A review of the effects of formaldehyde release from endodontic materials[J]. Int Endod J, 2015, 48(9):829-838.
3
拜冰阳,乔琦,李俊华, 等. 甲醛催化氧化催化剂的研究进展(英文)[J]. 催化学报, 2016, 37(1):102-122.
4
Al Lawati HAJ, Al Mughairy B, Al Lawati I, et al. Enhancing the chemiluminescence intensity of a KMnO4 formaldehyde system for estimating the total phenolic content in honey samples using a novel nanodroplet mixing approach in a microfluidics platform[J]. Luminescence, 2018, 33(5):863-870.
5
柯建祺. 室内空气中甲醛检测方法探讨[J]. 技术与市场, 2018, 25(3):116-118.
6
李倩,郝志明. 生长分化因子11:TGF-β超家族的新成员[J]. 生物化学与生物物理进展, 2015, 42(7):616-623.
7
沈巧艳,李娜,华进联. 抗衰老的GDF11生物学特征与功能表现[J]. 中国生物化学与分子生物学报, 2016, 32(8):872-878.
8
Tiwari D, Bhunia H, Bajpai PK. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: kinetics, isotherm, and thermodynamics[J]. J Environ Manage, 2018, 218:579-592.
9
Tiwari D, Goel C, Bhunia H, et al. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture[J]. J Environ Manage, 2017, 197:415-427.
10
Minkwitz R, Schneider S, Preut H. Formaldehyde in super acids: a succession of products from carbenium through oxonium ion to hydroxymethyl(methylidene)oxonium salts[J]. Angew Chem Int Ed Engl, 1998, 37(4):494-496.
11
Lyles GA. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects[J]. Int J Biochem Cell Biol, 1996, 28(3):259-274.
12
窦苗苗. 生长分化因子11对神经细胞增殖、分化的影响及作用机制的初探[D]. 北京:北京协和医学院, 2017.
13
张昊驹. 生长分化因子11对小鼠神经干细胞增殖及TGF-β/Smads和Wnt/β-Catenin信号通路的影响[D]. 合肥: 安徽医科大学, 2017.
14
Zhang W, Guo Y, Li B, et al. GDF11 rejuvenates cerebrovascular structure and function in an animal model of alzheimer's disease[J]. J Alzheimers Dis, 2018, 62(2):807-819.
15
张利平,孟燕,元小冬, 等. 内质网应激及介导细胞凋亡信号转导研究进展[J]. 生物医学工程与临床, 2018, 22 (2):214-220.
16
Choudhary GS, Al-Harbi S, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis[J]. Methods Mol Biol, 2015, 1219:1-9.
17
朱玉侠,赵明星,姜登鸽, 等. 抑癌基因p53、凋亡抑制基因Bcl-2、促凋亡基因Bax在胃癌及癌前病变中的表达[J]. 胃肠病学和肝病学杂志, 2016, 25(9):1040-1043.
18
丁倩. 凋亡相关蛋白BCL-B在肝纤维化逆转中对肝星状细胞凋亡的调节及机制研究[D]. 石家庄: 河北医科大学, 2017.
19
高婷,王子旭,陈祝茗, 等. ROS介导的氧化应激与自噬[J]. 中国畜牧兽医, 2018, 45(3):656-662.
20
Park HS, Han JH, Jung SH, et al. Anti-apoptotic effects of autophagy via ROS regulation in microtubule-targeted and PDGF-stimulated vascular smooth muscle cells[J]. Korean J Physiol Pharmacol, 2018, 22(3):349-360.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[5] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[6] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[7] 余慧, 王静, 杜丹, 杨帆. 下调miR-301a-3p抑制人卵巢颗粒KGN细胞增殖和诱导凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 137-143.
[8] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[9] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[10] 张敏, 费晓炜, 罗耀文, 付奕豪, 张磊, 高大宽. D-阿洛糖对OGD/R诱导的HT22细胞损伤及Gal-3表达的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 135-141.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要