切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 224 -229. doi: 10.3877/cma.j.issn.2095-1221.2019.04.006

所属专题: 文献

论著

二甲双胍对人脐带间充质干细胞形态、增殖、表面标志及细胞周期的影响
弓勋1, 云升1,()   
  1. 1. 010010 呼和浩特,内蒙古医科大学附属医院干细胞研究中心
  • 收稿日期:2019-02-22 出版日期:2019-08-01
  • 通信作者: 云升

Effects of metformin on cell morphology, proliferation, surface markers and cell cycle of human umbilical cord mesenchymal stem cells

Xun Gong1, Sheng Yun1,()   

  1. 1. Stem Cell Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, China
  • Received:2019-02-22 Published:2019-08-01
  • Corresponding author: Sheng Yun
  • About author:
    Corresponding author: Yun Sheng, Email:
引用本文:

弓勋, 云升. 二甲双胍对人脐带间充质干细胞形态、增殖、表面标志及细胞周期的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(04): 224-229.

Xun Gong, Sheng Yun. Effects of metformin on cell morphology, proliferation, surface markers and cell cycle of human umbilical cord mesenchymal stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(04): 224-229.

目的

探讨不同浓度二甲双胍(METF)对人脐带间充质干细胞(hUC-MSC)形态、增殖、表面标志及细胞周期的影响。

方法

取健康足月新生儿脐带在体外分离出hUC-MSC进行传代培养,至第3代(流式细胞仪分析)对细胞进行鉴定,取第6代处于对数生长期的hUC-MSC (相对老化),将对照组与不同浓度METF (0.1,1,5,10,20?mmol/L)干预的细胞进行比较,观察不同浓度METF干预对细胞的形态、增殖率(MTT法分别于24、48、72?h检测)、及细胞表面标志和细胞周期的影响,采用One-Way ANOVA,及LSD-t检验进行统计学分析。

结果

(1)METF为0.1?mmol/L、1?mmol/L,细胞形态无显著改变,当药物浓度为5?~?20?mmol/?L时,随着药物浓度增加、培养时间延长,细胞形态改变越显著。(2)METF为0.1?mmol/L(24?h:101.28±0.98,24?h:104.06±1.76,24?h:101.51±0.67)促进hUC-MSC增殖,药物浓度为1?~ 10?mmol/L在培养初期可增加间充质干细胞的增殖率,随着培养时间的延长,细胞的增殖逐渐被抑制。METF为20?mmol/L(24?h:86.64±0.66,48?h:58.38±2.52,72?h:17.75±1.35)抑制细胞增殖,抑制作用随着时间延长而增强(P?< 0.05)。(3)当METF浓度为5,10,20?mmol/L时,随着药物浓度的增加,CD105的表达逐渐减弱(F?= 17.539,P?< 0.05)。METF未对CD44、CD90产生影响。(4)METF为0.1?mmol/L时降低G0/G1期的比例(64.16±1.20,P?< 0.05),促进间充质干细胞的增殖,随着药物浓度的增加,细胞增殖逐渐被抑制。

结论

METF浓度在0.1mmol/?L促进hUC-MSC增殖,而在浓度5 ~ 20?mmol/L时抑制人脐带间充质干细胞的增殖及表面标志CD105的表达,不同浓度的METF均未对CD44、CD90的表达产生影响。

Objective

To study the effects of different concentrations of metformin on morphology, proliferation, surface markers and cell cycle of human umbilical cord mesenchymal stem cells (hUC-MSC) .

Methods

hUC-MSC were isolated from the umbilical cord of full-term newborns in vitro for subculture. The 6th generation of hUC-MSCs in logarithmic growth phase were used in the study. The control group was compared with different concentrations of metformin (0.1, 1, 5, 10, 20 mmol/L) to observe the morphology of cells treated with different concentrations of metformin. The effects of proliferation rate (MTT method) , cell surface markers and cell cycle (flow cytometry analysis) were analyzed by One-Way ANOVA and LSD-t test.

Results

(1) METF was 0.1?mmol/L, 1?mmol/L, and the cell morphology did not change significantly. When the drug concentration was 5?~ 20?mmol/L, the cell morphology changed more obviously with the increase of drug concentration and culture time. (2) When METF was 0.1?mmol/L (highest 104.06±1.76) , it promoted the proliferation of hUC-MSC. The drug concentration of 1?~ 10?mmol/L could increase the proliferation rate of mesenchymal stem cells in the early stage of culture. With the prolongation of culture time, the cells proliferation was gradually suppressed. METF was 20?mmol/L (24?h: 86.64±0.66, 48?h: 58.38±2.52, 72?h: 17.75±1.35) to inhibit cell proliferation, and the inhibition increased with time (P?< 0.05) . When the concentration of metformin was 5, 10, 20?mmol/L, the expression of CD105 gradually decreased with the increase of drug concentration (F?= 17.539, P?< 0.05) . Metformin did not affect CD44 and CD90. When metformin was 0.1?mmol/L, the ratio of G0/?G1 phase was decreased (64.16±1.20, P?< 0.05) , which promoted the proliferation of mesenchymal stem cells. With the increase of drug concentration, cell proliferation was gradually inhibited.

Conclusion

Metformin can promote the proliferation of hUC-MSC at the concentration of 0.1?mmol/L, and inhibit the proliferation of hUC-MSC and the expression of CD105 at the concentration of 5?~ 20?mmol/L. All different concentrations of metformin would influence the expressions of CD44 and CD90.

图1 倒置显微镜下观察各组细胞在不同浓度METF影响下的形态(×100)
图2 MTT比色法检测相对增殖率
表1 不同时间各组培养的hUC-MSC相对增殖率(n = 3,﹪, ± s
图3 不同浓度METF对CD105的影响
表2 共培养24 h后不同浓度METF对hUC-MSC表面标记的影响(n = 3, ± s
图4 不同浓度METF对hUC-MSC细胞周期的影响
图5 不同浓度METF对hUC-MSC增殖指数的影响
表3 不同浓度METF作用48 h后hUC-MSC细胞周期的影响(n = 3,﹪, ± s
1
Nekanti U, Dastidar S, Venugopal P, et al. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia[J]. Int J Biol Sci, 2010, 6(5):499-512.
2
封冰, 陈龙邦. 间充质干细胞与肿瘤:抑制或促进?[J]. 中国肿瘤生物治疗杂志, 2009, 16(5):532-536, 545.
3
Dittmer A, Hohlfeld K, Luetzkendorf JA, et al. Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating Adam10[J]. Cell Mol Life Sci, 2009, 66(18):3053-3065.
4
Etheridge SL, Spencer GJ, Heath DJ, et al. Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells[J]. Stem Cells, 2004, 22(5):849-860.
5
Sun B, Roh KH, Park JR, et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model[J]. Cytotherapy, 2009, 11(3):U14-289.
6
张洁, 方琳, 郑骏年. 间充质干细胞介导的肿瘤治疗[J]. 国际肿瘤学杂志, 2015, 42(8):612-615.
7
刘莎, 吴明, 邸琨, 等. 人脐带间充质干细胞条件培养液通过线粒体凋亡通路对抗Aβ诱导的原代皮质神经元凋亡[J]. 河北医科大学学报, 2019, 40(04):390-395.
8
赵姝灿, 郑桂纯. 人羊水,脐带,胎盘来源间充质干细胞体外增殖,分化,运输和免疫学特性的比较[J]. 中国组织工程研究, 2018, 22(25):4028-4034.
9
林意, 林金德. 二甲双胍抗衰老作用的研究进展[J]. 安徽医药, 2018, 22(09):1657-1660.
10
Bulterijs S. Metformin as a geroprotector[J]. Rejuvenation Res, 2011, 14(5):469-482.
11
De Haes W, Frooninckx L, Van Assche R, et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2[J]. Proc Natl Acad Sci U S A, 2014, 111(24):E2501-E2509.
12
WANG, DaTing, W U, et al. Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling[J]. Sci China Life Sci, 2015, 58(5):451-464.
13
Li Y, Chen C, Yao F, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1[J]. Arch Biochem Biophys, 2014, 558:79-86.
14
齐赫, 刘亭亭, 李国荣. 二甲双胍延长寿命的作用及其作用机制[J]. 中国临床药理学与治疗学, 2012, 17(11):1295-1301.
15
Onken B, Driscoll M. Metformin induces a dietary Restriction-Like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1[J]. PLoS One, 2010, 5(1):e8758.
16
Ma TC, Buescher JL, Oatis B, et al. Metformin therapy in a transgenic mouse model of Huntington's disease[J]. Neurosci Lett, 2007, 411(2): 98-103.
17
Loebinger MR, Kyrtatos PG, Turmaine MA, et al. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles[J]. Cancer Res, 2009, 69(23):8862-8867.
18
Jiang LR, Zhang SQ, Hu HZ, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages[J]. Biochem Biophys Res Commun, 2019, 508(3):735-741.
19
Hsieh JY, Fu YS, Chang SJ, et al. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and wharton's jelly of umbilical cord[J]. Stem Cells Dev, 2010, 19(12):1895-1910.
20
Fong CY, Chak LL, Biswas A, et al. Human wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells[J]. Stem Cell Rev, 2011, 7(1):1-16.
21
周福洋, 印大中. 二甲双胍的临床应用及抗衰延寿生化药理机制的深层思考[J]. 中国老年学杂志, 2018, 38(3):748-752.
22
董锁花, 王芳, 包金风. DNA甲基化对细胞周期的调控[J]. 中国细胞生物学学报, 2018, 40(12):2083-2089.
23
张林西, 郭颖, 白美玲. 新生血管、淋巴管在结直肠癌进展中的作用[J]. 中国老年学杂志, 2016, 36(5):1116-1118.
[1] 王颉, 周游. 二甲双胍治疗骨关节炎的机制及其研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 372-378.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J/OL]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[6] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[7] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[8] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[9] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[10] 吴亚萍, 吴颖. miR-340-5p调控PDE4D表达对胃癌细胞顺铂耐药性的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 346-354.
[11] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[12] 邵文哲, 孙倩男, 王道荣. Galectin-9在结直肠癌中的表达及其临床意义[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(02): 112-120.
[13] 李佳曦, 刘子源, 李学民. 二甲双胍对年龄相关性白内障影响的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 252-256.
[14] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[15] 袁捷, 乔钰琪, 李彦冬. 二甲双胍、来曲唑联合地屈孕酮治疗多囊卵巢综合征合并不孕症的效果评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 343-347.
阅读次数
全文


摘要