切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2018, Vol. 08 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-1221.2018.04.001

所属专题: 文献

论著

miR-34a-5p靶向GMFB抑制细胞增殖对先天性巨结肠的治疗意义
张亚飞1, 余辉2, 郑百俊2, 谢崇2, 葛鑫2, 李鹏2, 高亚2, 潘伟康2,()   
  1. 1. 712000 咸阳,陕西省核工业二一五医院内镜中心
    2. 710004 西安,西安交通大学第二附属医院小儿外科
  • 收稿日期:2018-04-24 出版日期:2018-08-01
  • 通信作者: 潘伟康
  • 基金资助:
    国家自然科学基金(81701501)

Effect of miR-34a-5p on cell proliferation by targeting GMFB in Hirschsprung disease

Yafei Zhang1, Hui Yu2, Baijun Zheng2, Chong Xie2, Xin Ge2, Peng Li2, Ya Gao2, Weikang Pan2,()   

  1. 1. Endoscopy Center, No.215 Hospital of Shaanxi Nuclear Industry, 712000 Xianyang, China
    2. Department of Pediatric Surgery, the Second Affiliated Hospital of Xi’an Jiao Tong University, 710004 Xi'an, China
  • Received:2018-04-24 Published:2018-08-01
  • Corresponding author: Weikang Pan
  • About author:
    Corresponding author:Pan Weikang, Email:
引用本文:

张亚飞, 余辉, 郑百俊, 谢崇, 葛鑫, 李鹏, 高亚, 潘伟康. miR-34a-5p靶向GMFB抑制细胞增殖对先天性巨结肠的治疗意义[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(04): 193-198.

Yafei Zhang, Hui Yu, Baijun Zheng, Chong Xie, Xin Ge, Peng Li, Ya Gao, Weikang Pan. Effect of miR-34a-5p on cell proliferation by targeting GMFB in Hirschsprung disease[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2018, 08(04): 193-198.

目的

探讨miR-34a-5p通过靶基因GMFB调控神经嵴细胞的增殖。

方法

通过荧光定量PCR检测miR-34a-5p在先天性巨结肠症(HSCR)和正常结肠组织中的表达,并通过双荧光素酶报告基因检测miR-34a-5p的靶基因,SH-SY5Y细胞转染miR-34a-5p mimics及对照miR-NC,并转染GMFB表达载体,通过CCK8检测miR-34a-5p和GMFB对神经嵴细胞增殖的影响,并通过Western Blot检测miR-34a-5p对GMFB蛋白表达的影响。采用t检验和单因素方差分析。

结果

荧光定量PCR结果显示,HSCR结肠组中miR-34a-5p的相对表达量为0.43±0.10,低于正常结肠组1.15±0.18,差异具有统计学意义(t = 3.50,P < 0.01)。CCK8结果显示,miR-34a-5p mimics组细胞在培养24?h和48?h后细胞A450值分别为0.53±0.03和0.87±0.04,低于miR-NC对照组0.87±0.03,1.42±0.04。双荧光素酶报告基因实验结果显示,miR-34a-5p mimics与GMFB 3'UTR WT载体共转染组荧光强度为0.44±0.03,低于对照miR-NC与WT载体共转染组1.02±0.06。CCK8结果所示,miR-34a-5p mimics+GMFB组细胞培养24?h和48?h后,A450值分别为0.99±0.02和1.50±0.03,高于miR-34a-5p mimics组0.53±0.03, 0.87±0.04,差异具有统计学意义(t?=?7.07,P < 0.01;t?=?9.14,P < 0.01)。Western Blot检测结果显示,miR-34a-5p mimics组细胞的GMFB蛋白表达量为0.25±0.01,低于miR-NC对照组0.90±0.03,差异具有统计学意义(t?=?35.60,P < 0.01),miR-34a-5p mimics+GMFB组细胞GMFB蛋白表达量为1.03±0.03,高于miR-34a-5p mimics组0.25±0.01,差异具有统计学意义(t?=?42.74,P < 0.01)。

结论

miR-34a-5p能够通过抑制靶基因GMFB的表达,抑制神经嵴细胞SH-SY5Y的增殖。

Objective

To investigated the effect of miR-34a-5p on proliferation of SH-SY5Y cells by targeting GMFB in Hirschsprung disease (HSCR).

Methods

The expression of miR-34a-5p in HSCR and normal colon tissues was detected by Q-PCR. The downstream target gene of miR-34a-5p was detected by dual luciferase reporter gene assay. SH-SY5Y cells were transferred with miR-NC, miR-34a-5p mimics and miR-34a-5p mimics+GMFB. The cell viability was detected by CCK8 assay. The expression of GMFB protein was detected by western blot. CCK8 and Western blot results were compared using t test and one-way ANOVA.

Results

The results of Q-PCR showed that the relative expression of miR-34a-5p in the HSCR colon was 0.43±0.10, which was significantly lower than that in the normal colon (1.15±0.18, t = 3.50, P < 0.01). CCK8 results showed that the cell A450 values of miR-34a-5p mimics group was 0.53±0.03 and 0.87±0.04 respectively at 24 h and 48 h, significantly lower than those of the miR-NC control group (0.87±0.03, 1.42±0.04). The dual luciferase reporter assay results showed that the fluorescence intensity of miR-34a-5p mimics co-transfected with GMFB 3'UTR WT vector was 0.44±0.03, which was significantly lower than that of the control miR-NC and WT vector co-transfection group 1.02±0.06. CCK8 results showed that after transfection of miR-34a-5p mimics + GMFB, cells at 24 h and 48 h had significantly higher A450 values 0.99±0.02 and 1.50±0.03, respectively, compared to 0.53±0.03 and 0.87±0.04 in the miR-34a-5p mimics group (t = 7.07, P < 0.01; t = 9.14, P < 0.01). Western blot results showed that the expression of GMFB protein in the miR-34a-5p mimics group was 0.25±0.01, which was significantly lower than that in the miR-NC control group (0.90±0.03, t = 35.60, P < 0.01). The expression of GMFB protein in the miR-34a-5p mimics+GMFB group was significantly higher than that in the miR-34a-5p mimics group (1.03±0.03 versus 0.25±0.01, t = 42.74, P < 0.01).

Conclusion

miR-34a-5p inhibited the proliferation of melanoma SH-SY5Y cells by regulating the expression of target gene GMFB.

图1 miR-34a-5p在HSCR和正常结肠组织中的表达量
表1 miR-34a-5p mimics组和miR-NC组细胞在不同时间细胞活力(A450)的比较结果( ± s
表2 qRT-PCR引物序列
表3 miR-34a-5p mimics组和miR-NC组细胞的荧光素酶活性(FIR/REN)的比较结果( ± s
图2 荧光素酶报告基因检测miR-34a-5p的靶基因
表4 两组细胞在不同时细胞活力(A450)的比较结果( ± s
图3 miR-34a-5p对人神经嵴细胞GMFB蛋白表达的影响
1
Granstrom AL,Svenningsson A,Hagel E, et al. Maternal risk factors and perinatal characteristics for hirschsprung disease[J]. Pediatrics, 2016, 138(1):1-7.
2
Torroglosa A,Alves MM,Fernandez RM, et al. Epigenetics in ENS development and Hirschsprung disease[J]. Dev Biol, 2016, 417(2, SI):209-216.
3
Gunadi,Makhmudi A,Agustriani N, et al. Effects of SEMA3 polymorphisms in Hirschsprung disease patients[J]. Pediatr Surg Int, 2016, 32(11):1025-1028.
4
Stathopoulos L,King SK,Southwell BR, et al. Nuclear Transit study in children with chronic faecal soiling after Hirschsprung disease(HSCR)surgery has revealed a group with rapid proximal colonic treatment and possible adverse reactions to food[J]. Pediatr Surg Int, 2016, 32(8):773-777.
5
Jia DF,Niu YP,Li DL, et al. IncRNA C2dat1 promotes cell proliferation, migration, and invasion by targeting miR-34a-5p in osteosarcoma cells[J]. Oncol Res, 2018, 26(5):753-764.
6
Liu LF,Chen X,Zhang Y, et al. Long non-coding RNA TUG1 promotes endometrial cancer development via inhibiting miR-299 and miR-34a-5p[J]. Oncotarget, 2017, 8(19):31386-31394.
7
Chen GL,Du CX,Shen ZY, et al. MicroRNA-939 inhibits cell proliferation via targeting LRSAM1 in Hirschsprung's disease[J]. Aging, 2017, 9(12):2471-2479.
8
Liu CX,Yu HH,Zhang Y, et al. Upregulation of miR-34a-5p antagonizes AFB1-induced genotoxicity in F344 rat liver[J]. Toxicon, 2015, 106:46-56.
9
Chatterjee S,Kapoor A,Akiyama JA, et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in hirschsprung disease[J]. Cell, 2016, 167(2):355.
10
Moore SW. Advances in understanding functional variations in the Hirschsprung disease spectrum (variant Hirschsprung disease)[J]. Pediatr Surg Int, 2017, 33(3):285-298.
11
Subramanian H,Badhe BA,Toi PC, et al. Morphometric profile of large intestinal neuronal plexuses in normal perinatal autopsies and Hirschsprung disease[J]. Neurogastroenterol Motil, 2017, 29(3):243-249.
12
Pan WK,Yu H,Zheng BJ, et al. Upregulation of MiR-369-3p suppresses cell migration and proliferation by targeting SOX4 in Hirschsprung's disease [J]. J Pediatr Surg, 2017, 52(8):1363-1370.
13
Wang YH,Chen T,Huang HL, et al. miR-363-3p inhibits tumor growth by targeting PCNA in lung adenocarcinoma[J]. Oncotarget, 2017, 8(12):20133-20144.
14
Yang LW,Lin ZY,Wang YH, et al. MiR-5100 increases the cisplatin resistance of the lung cancer stem cells by inhibiting the Rab6[J]. Mol Carcinog, 2018, 57(3):419-428.
15
Gao J,Li N,Dong Y, et al. miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage Ⅱ/Ⅲ colorectal cancer [J]. Oncogene, 2015, 34(31):4142-4152.
16
Zhu JN,Fu YH,Hu ZQ, et al. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity[J]. Sci Rep, 2017, 7(1):11879.
17
Bourgeois F,Guimiot F,Mas C, et al. Identification and isolation of a full-length clone of mouse GMFB (Gmfb), a putative intracellular kinase regulator, differentially expressed in telencephalon[J]. Cytogenet Cell Genet, 2001, 92(3/4):304-309.
18
Inagaki M,Aoyama M,Sobue K, et al. Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes[J]. Biochim Biophys Acta, 2004, 1670(3):208-216.
19
Ahmed ME,Iyer S,Thangavel RA, et al. Co-Localization of Glia maturation factor with NLRP3 inflammasome and autophagosome markers in human alzheimer's disease brain[J]. J Alzheimers Dis, 2017, 60(3):1143-1160.
20
Thangavel R,Kempuraj D,Zaheer SA, et al. Glia maturation factor and mitochondrial uncoupling proteins 2 and 4 expression in the temporal cortex of alzheimer's disease brain[J]. Front Aging Neurosci, 2017, 9:150.
21
Zhu TZ,Li XM,Luo LH, et al. beta-Elemene inhibits proliferation through crosstalk between glia maturation factor beta and extracellular signal-regulated kinase 1/2 and impairs drug resistance to temozolomide in glioblastoma cells[J]. Mol Med Rep, 2014, 10(2):1122-1128.
[1] 孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.
[2] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[3] 夏凯, 高仁元, 吴小材, 阮瑜, 孙静, 俞明霞, 尹路, 陈春球. 腹腔镜结肠次全切除联合改良Duhamel术治疗成人先天性巨结肠25例报告[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 91-94.
[4] 石浩伟, 郝少龙, 纪宇, 孙浩, 聂芳, 胡阳, 李泽乾, 韩威. 长链非编码RNA-BANCR在胰腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2022, 16(05): 554-559.
[5] 雷震, 郭正辉, 唐晨, 彭圣萌, 任艳婷, 吴宛桦, 周杰, 陈勇明, 李凌峰, 黄海, 赖义明. ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 262-269.
[6] 曾纪晓, 徐晓钢, 刘斐, 兰梦龙, 陶波圆, 梁子建, 王欣星. 单孔腹腔镜在先天性长段型巨结肠分期手术的运用[J]. 中华腔镜外科杂志(电子版), 2023, 16(02): 96-100.
[7] 韦先梅, 韩毓, 蒋英彩. 敲减circSERPINE2通过靶向调控miR-34a-5p表达抑制滋养层细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 193-201.
[8] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[9] 梁芳, 刘广申, 徐艳. LncRNA AC130710通过miR-129-5P/WNT4轴促进子宫内膜癌细胞增殖和上皮间质转化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 206-214.
[10] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[11] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[12] 汤永昌, 袁峰, 梁豪, 钟昭众, 熊志勇, 曹明波, 任昱朋, 李宇轩, 姚志成, 邓美海. HBx对HBV相关性肝癌增殖和迁移能力的影响及其机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 198-202.
[13] 彭彩霞, 李育婵, 蒋双兰, 余凤, 邓颖华. 超声造影在小儿先天性巨结肠中的诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2022, 12(05): 278-280.
[14] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[15] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
阅读次数
全文


摘要