1 |
Sydykov A, Mamazhakypov A, Maripov A, et al. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders[J]. Int J Environ Res Public Health, 2021, 18(4):1692. doi: 10.3390/ijerph18041692.
|
2 |
Jensen JD, Vincent AL. High altitude pulmonary edema[M]. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Andrew Vincent declares no relevant financial relationships with ineligible companies; StatPearls Publishing Copyright© 2024, StatPearls Publishing LLC. 2024.
|
3 |
陈杨, 潘春光, 姜俊杰, 等. 高原肺水肿的发病机制及其防治研究进展[J]. 解放军预防医学杂志, 2018, 36(4):532-536.
|
4 |
Luks AM, Auerbach PS, Freer L, et al. Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 update[J]. Wilderness Environ Med, 2019, 30(4s):S3-S18.
|
5 |
Tannheimer M, Lechner R. Initial treatment of high-altitude pulmonary edema: comparison of oxygen and auto-PEEP[J]. Int J Environ Res Public Health, 2022, 19(23):16185. doi: 10.3390/ijerph192316185.
|
6 |
Tieu A, Hu K, Gnyra C, et al. Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: a meta-analysis[J]. J Extracell Vesicles, 2021, 10(12):e12141. doi: 10.1002/jev2.12141.
|
7 |
Abreu SC, Lopes-Pacheco M, Weiss DJ, et al. Mesenchymal stromal cell-derived extracellular vesicles in lung diseases: current status and perspectives[J]. Front Cell Dev Biol, 2021, 9:600711. doi: 10.3389/fcell.2021.600711.
|
8 |
Sekar D. Extracellular vesicles are involved in oxidative stress and mitochondrial homeostasis in pulmonary arterial hypertension[J]. Hypertens Res, 2021, 44(8):1028-1029.
|
9 |
Richalet JP, Jeny F, Callard P, et al. High-altitude pulmonary edema: the intercellular network hypothesis[J]. Am J Physiol Lung Cell Mol Physiol, 2023, 325(2):L155-Ll73.
|
10 |
Burtscher M, Hefti U, Hefti JP. High-altitude illnesses: old stories and new insights into the pathophysiology, treatment and prevention[J]. Sports Med Health Sci, 2021, 3(2):59-69.
|
11 |
Luks AM, Swenson ER. COVID-19 lung injury and high-altitude pulmonary edema. a false equation with dangerous implications[J]. Ann Am Thorac Soc, 2020, 17(8):918-921.
|
12 |
Sel FA, Oguz FS. Regenerative medicine application of mesenchymal stem cells[J]. Adv Exp Med Biol, 2022, 1387:25-42.
|
13 |
Guo H, Su Y, Deng F. Effects of mesenchymal stromal cell-derived extracellular vesicles in lung diseases: current status and future perspectives[J]. Stem Cell Rev Rep, 2021, 17(2):440-458.
|
14 |
Liu A, Zhang X, He H, et al. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease[J]. Expert Opin Biol Ther, 2020, 20(2):125-140.
|
15 |
Yuan YG, Wang JL, Zhang YX, et al. Biogenesis, composition and potential therapeutic applications of mesenchymal stem cells derivedexosomes in various diseases[J]. Int J Nanomedicine, 2023, 18:3177-3210.
|
16 |
Kang J, Hua P, Wu X, et al. Exosomes: efficient macrophage-related immunomodulators in chronic lung diseases[J]. Front Cell Dev Biol, 2024, 12:1271684. doi: 10.3389/fcell.2024.1271684.
|
17 |
Zhang Z, Mi T, Jin L, et al. Comprehensive proteomic analysis of exosome mimetic vesicles and exosomes derived from human umbilical cord mesenchymal stem cells[J]. Stem Cell Res Ther, 2022, 13(1):312. doi: 10.1186/s13287-022-03008-6.
|
18 |
Ma M, Li B, Zhang M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes on retinal detachment[J]. Exp Eye Res, 2020, 191:107899. doi: 10.1016/j.exer.2019.107899.
|
19 |
Budgude P, Kale V, Vaidya A. Mesenchymal stromal cell-derived extracellular vesicles as cell-free biologics for the ex vivo expansion of hematopoietic stem cells[J]. Cell Biol Int, 2020, 44(5):1078-1102.
|
20 |
El Alam S, Pena E, Aguilera D, et al. Inflammation in pulmonary hypertension and edema induced by hypobaric hypoxia exposure[J]. Int J Mol Sci, 2022, 23(20):12656. doi: 10.3390/ijms232012656.
|
21 |
Jiang DT, Tuo L, Bai X, et al. Prostaglandin E1 reduces apoptosis and improves the homing of mesenchymal stem cells in pulmonary arterial hypertension by regulating hypoxia-inducible factor 1 alpha[J]. Stem Cell Res Ther, 2022, 13(1):316. doi: 10.1186/s13287-022-03011-x.
|
22 |
Sun QW, Sun Z. Stem cell therapy for pulmonary arterial hypertension: an update[J]. J Heart Lung Transplant, 2022, 41(6):692-703.
|
23 |
Tang HT, Mu WH, Xiang YJ, et al. Effect of hepatocyte growth factor on mice with hypoxic pulmonary arterial hypertension: a preliminary study[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2022, 24(8):936-941.
|
24 |
Nan W, He Y, Wang S, et al. Molecular mechanism of VE-cadherin in regulating endothelial cell behaviour during angiogenesis[J]. Front Physiol, 2023, 14:1234104. doi: 10.3389/fphys.2023.1234104.
|
25 |
Tang XD, Shi L, Monsel A, et al. Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA[J]. Stem cells, 2017, 35(7):1849-1859.
|
26 |
Cai W, Liu Z, Li G, et al. The effects of a graded increase in chronic hypoxia exposure duration on healthy rats at high-altitude[J]. Int J Clin Exp Pathol, 2019, 12(6):1975-1991.
|
27 |
Zhang X, Chen J, Xue M, et al. Overexpressing p130/E2F4 in mesenchymal stem cells facilitates the repair of injured alveolar epithelial cells in LPS-induced ARDS mice[J]. Stem Cell Res Ther, 2019, 10(1):74. doi: 10.1186/s13287-019-1169-1.
|
28 |
Li YY, Xu QW, Xu PY, et al. MSC-derived exosomal miR-34a/c-5p and miR-29b-3p improve intestinal barrier function by targeting the snail/claudins signaling pathway[J]. Life Sci, 2020, 257:118017. doi: 10.1016/j.lfs.2020.118017.
|
29 |
Klimczak A. Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19[J]. World J Stem Cells, 2020, 12(9):1013-1022.
|
30 |
Liu J, Schiralli-Lester GM, Norman R, et al. Upregulation of alveolar fluid clearance is not sufficient for Na(+),K(+)-ATPase β subunit-mediated gene therapy of LPS-induced acute lung injury in mice[J]. Sci Rep, 2023, 13(1):6792. doi: 10.1038/s41598-023-33985-4.
|
31 |
Sartori C, Duplain H, Lepori M, et al. High altitude impairs nasal transepithelial sodium transport in HAPE-prone subjects[J]. Eur Respir J, 2004, 23(6):916-920.
|
32 |
Song N, Wakimoto H, Rossignoli F, et al. Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm[J]. Stem cells, 2021, 39(6):707-722.
|
33 |
Zhou Z, Hua Y, Ding Y, et al. Conditioned medium of bone marrow mesenchymal stem cells involved in acute lung injury by regulating epithelial sodium channels via miR-34c[J]. Front Bioeng Biotechnol, 2021, 9:640116. doi: 10.3389/fbioe.2021.640116.
|
34 |
Loy H, Kuok DIT, Hui KPY, et al. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A(H5N1) virus-associated acute lung injury[J]. J Infect Dis, 2019, 219(2):186-196.
|
35 |
Gaur P, Prasad S, Kumar B, et al. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches[J]. Int J Biometeorol, 2021, 65(4):601-615.
|
36 |
Li X, Zhang J, Liu G, et al. High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers[J]. Life Sci, 2024, 336:122319. doi: 10.1016/j.lfs.2023.122319.
|
37 |
Sarada S, Himadri P, Mishra C, et al. Role of oxidative stress and NFkB in hypoxia-induced pulmonary edema[J]. Exp Biol Med (Maywood), 2008, 233(9):1088-1098.
|
38 |
Zhang W, Wang T, Xue Y, et al. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases[J]. Front Immunol, 2023, 14:1238789. doi: 10.3389/fimmu.2023.1238789.
|
39 |
Wang T, Jian Z, Baskys A, et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system[J]. Biomaterials, 2020, 257:120264. doi: 10.1016/j.biomaterials.2020.120264.
|
40 |
Sharma M, Singh SB, Sarkar S. Genome wide expression analysis suggests perturbation of vascular homeostasis during high altitude pulmonary edema[J]. PloS one, 2014, 9(1):e85902. doi: 10.1371/journal.pone.0085902.
|
41 |
Liu JS, Du J, Cheng X, et al. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury[J]. J Chin Med Assoc, 2019, 82(12):895-901.
|
42 |
Liu J, Chen T, Lei P, et al. Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-κB pathway[J]. Int J Med Sci, 2019, 16(9):1238-1244.
|
43 |
Harrell CR, Jovicic N, Djonov V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. doi: 10.3390/cells8121605.
|
44 |
Akbari A, Rezaie J. Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia[J]. Stem Cell Res Ther, 2020, 11(1):356. doi: 10.1186/s13287-020-01866-6.
|