1 |
Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review[J]. Burns Trauma, 2022, 10: tkab047.doi: 10.1093/burnst/tkab047.
|
2 |
Buote NJ. Updates in wound management and dressings[J]. Vet Clin North Am Small Anim Pract, 2022, 52(2):289-315.
|
3 |
Erratico S, Belicchi M, Meregalli M, et al. Effective high-throughput isolation of enriched platelets and circulating pro-angiogenic cells to accelerate skin-wound healing[J]. Cell Mol Life Sci, 2022, 79(5):259.
|
4 |
Liu W, Shi K, Zhu X, et al. Adipose tissue-derived stem cells in plastic and reconstructive surgery:a bibliometric study[J]. Aesthetic Plast Surg, 2021, 45(2):679-689.
|
5 |
Oliveira A, Simões S, Ascenso A, et al. Therapeutic advances in wound healing[J]. J Dermatolog Treat, 2022, 33(1):2-22.
|
6 |
Wan R, Weissman JP, Grundman K, et al. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments[J]. Wound Repair Regen, 2021, 29(4):573-581.
|
7 |
Lawrence PF, Hager ES, Harlander-Locke MP, et al. Treatment of superficial and perforator reflux and deep venous stenosis improves healing of chronic venous leg ulcers[J]. J Vasc Surg Venous Lymphat Disord, 2020, 8(4):601-609.
|
8 |
Rocha MNB, Serna Gonzalez CV, Borges EL, et al. Incidence of recurrent venous ulcer in patients treated at an outpatient clinic: historical cohort[J]. Int J Low Extrem Wounds, 2022, 4: 15347346211065929. doi: 10.1177/15347346211065929.
|
9 |
Heydari P, Kharaziha M, Varshosaz J, et al. Current knowledge of immunomodulation strategies for chronic skin wound repair[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(2):265-288.
|
10 |
Kim SY, Nair MG. Macrophages in wound healing:activation and plasticity[J]. Immunol Cell Biol, 2019, 97(3):258-267.
|
11 |
Tellechea A, Leal EC, Kafanas A, et al. Mast cells regulate wound healing in diabetes[J]. Diabetes, 2016, 65(7):2006-2019.
|
12 |
Moura J, Rodrigues J, Gonçalves M, et al. Impaired T-cell differentiation in diabetic foot ulceration[J]. Cell Mol Immunol, 2017, 14(9):758-769.
|
13 |
Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis[J]. Int J Mol Sci, 2017, 18(7):1419.
|
14 |
Pastar I, Stojadinovic O, Krzyzanowska A, et al. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers[J]. Mol Med, 2010, 16(3-4):92-101.
|
15 |
Lauer G, Sollberg S, Cole M, et al. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds[J]. J Invest Dermatol, 2000, 115(1):12-18.
|
16 |
Diridollou S, Vabre V, Berson M, et al. Skin ageing: changes of physical properties of human skin in vivo[J]. Int J Cosmet Sci, 2001, 23(6):353-362.
|
17 |
王影,于佃才,罗岸峰, 等. 微创获取人脂肪来源干细胞的分离培养和鉴定[J]. 中国美容整形外科杂志, 2021, 32(04):245-7+68.
|
18 |
Deng C, Wang L, Feng J, et al. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel:A STROBE-compliant study[J]. Medicine (Baltimore), 2018, 97(32):e11667.doi: 10.1097/MD.0000000000011667.
|
19 |
Tanios E, Ahmed TM, Shafik EA, et al. Efficacy of adipose-derived stromal vascular fraction cells in the management of chronic ulcers:a randomized clinical trial[J]. Regen Med, 2021, 16(11):975-988.
|
20 |
Zollino I, Campioni D, Sibilla MG, et al. A phase II randomized clinical trial for the treatment of recalcitrant chronic leg ulcers using centrifuged adipose tissue containing progenitor cells[J]. Cytotherapy, 2019, 21(2):200-211.
|
21 |
Klar AS, Güven S, Biedermann T, et al. Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells[J]. Biomaterials, 2014, 35(19): 5065-5078.
|
22 |
Chen J, Deng S, Zhang S, et al. The role of miRNAs in the differentiation of adipose-derived stem cells [J]. Curr Stem Cell Res Ther, 2014, 9(3): 268-279.
|
23 |
Xiong J, Liu Z, Wu M, et al. Comparison of proangiogenic effects of adipose-derived stem cells and foreskin fibroblast exosomes on artificial dermis prefabricated flaps[J]. Stem Cells Int, 2020, 2020: 5293850. doi: 10.1155/2020/5293850.eCollection2020.
|
24 |
Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction[J]. Blood, 2010, 116(5): 829-840.
|
25 |
Mazini L, Rochette L, Admou B, et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing [J]. Int J Mol Sci, 2020, 21 (4):1306.
|
26 |
Stojanović S, Najman S. The effect of conditioned media of stem cells derived from lipoma and adipose tissue on macrophages' response and wound healing in indirect co-culture system in vitro[J]. Int J Mol Sci, 2019, 20(7):1671.
|
27 |
Smith OJ, Jell G, Mosahebi A. The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence[J]. Int Wound J, 2019, 16(1): 275-285.
|
28 |
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue [J]. Diabetes, 2018, 67(2): 235-247.
|
29 |
葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制 [J]. 山东大学学报(医学版), 2021, 59(9): 51-56.
|
30 |
Yañez R, Oviedo A, Aldea M, et al. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells[J]. Exp Cell Res, 2010, 316(19): 3109-3123.
|
31 |
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells[J]. Front Immunol, 2014, 5: 556.
|
32 |
Hong P, Yang H, Wu Y, et al. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review[J]. Stem Cell Res Ther, 2019, 10(1): 242.
|
33 |
Hsu LC, Peng BY, Chen MS, et al. The potential of the stem cells composite hydrogel wound dressings for promoting wound healing and skin regeneration: In vitro and in vivo evaluation[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(2): 278-285.
|
34 |
Yu J, Wang MY, Tai HC, et al. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation[J]. Acta Biomater, 2018, 77: 191-200.
|
35 |
Gonzalo-Daganzo R, Regidor C, Martín-Donaire T, et al. Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults[J]. Cytotherapy, 2009, 11(3): 278-288.
|
36 |
Lin ZQ, Kondo T, Ishida Y, et al. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice[J]. J Leukoc Biol, 2003, 73(6): 713-721.
|
37 |
Bachmann S, Jennewein M, Bubel M, et al. Interacting adipose-derived stem cells and microvascular endothelial cells provide a beneficial milieu for soft tissue healing[J]. Mol Biol Rep, 2020, 47(1):111-122.
|
38 |
江琰笛,朱晶晶,陶崑, 等. 慢性难愈合创面与细菌生物膜形成相关性研究进展[J]. 中国消毒学杂志, 2021, 38(5): 377-380.
|
39 |
Zang X, He L, Zhao L, et al. Adipose-derived stem cells prevent the onset of bisphosphonate-related osteonecrosis of the jaw through transforming growth factor β-1-mediated gingival wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 169.
|
40 |
Bellei B, Migliano E, Tedesco M, et al. Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine [J]. Stem Cell Res Ther, 2018, 9(1): 207.
|
41 |
Verhaegen PD, van Zuijlen PP, Pennings NM, et al. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis [J]. Wound Repair Regen, 2009, 17(5): 649-656.
|
42 |
Wang C, Wang M, Xu T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration [J]. Theranostics, 2019, 9(1): 65-76.
|
43 |
Weiliang Z, Lili G. Research advances in the application of adipose-derived stem cells derived exosomes in cutaneous wound healing[J]. Ann Dermatol, 2021, 33(4): 309-317.
|