1 |
肖漓,白剑,陈文, 等. 脐带间充质干细胞外泌体的分离和鉴定[J/CD]. 中华细胞与干细胞杂志(电子版), 2016, 6(4):236-239.
|
2 |
马锡慧,肖漓,冯凯, 等. 人脐带和骨髓间充质干细胞体外分离培养及生物学特性比较[J/CD]. 中华细胞与干细胞杂志(电子版), 2015, 5(2):10-13.
|
3 |
Wang S, Xia P, Rehm M, et al. Autophagy and cell reprogramming[J]. Cell Mol Life Sci, 2015, 72(9):1699-1713.
|
4 |
孙英焕,吴茜,李春莳, 等. 巨自噬及分子伴侣介导自噬在类风湿关节炎中的相互作用及其联系[J]. 中国免疫学杂志, 2016, 32(10):1566-1569.
|
5 |
Lapaquette P, Guzzo J, Bretillon L, et al. Cellular and molecular connections between autophagy and inflammation[J]. Mediators Inflamm, 2015, 2015:398483.
|
6 |
Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins[J]. Nat Struct Mol Biol, 2014, 21(4):336-345.
|
7 |
Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy[J]. BMB Rep, 2016, 49(8):424-430.
|
8 |
Oliver L, Hue E, Rossignol J, et al. Distinct roles of Bcl-2 and Bcl-Xl in the apoptosis of human bone marrow mesenchymal stem cells during differentiation[J]. PLoS One, 2011, 6(5):e19820.
|
9 |
Molaei S, Roudkenar MH, Amiri F, et al. Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions[J]. Blood Res, 2015, 50(2):80-86.
|
10 |
Zhao K, Hao H, Liu J, et al. Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced β-cell injury through modulation of autophagy[J]. Cell Death Dis, 2015, 6(9):e1885.
|
11 |
Han YF, Sun TJ, Han YQ, et al. Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy[J]. Eur Rev Med Pharmacol Sci, 2015, 19(14):2666-2670.
|
12 |
Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy[J]. PLoS One, 2015, 10(5):e0126537.
|
13 |
马洋,刘文佳,戚朦, 等. 自然衰老小鼠骨髓间充质干细胞增龄性改变的研究[J]. 牙体牙髓牙周病学杂志, 2014, 24(4):187-191.
|
14 |
Capasso S, Alessio N, Squillaro T, et al. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells[J]. Oncotarget, 2015, 6(37):39457-39468.
|
15 |
Madeo F, Zimmermann A, Maiuri MC, et al. Essential role for autophagy in Life span extension[J]. J Clin Invest, 2015, 125(1):85-93.
|
16 |
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target[J]. Biochem Pharmacol, 2015, 94(1):1-11.
|
17 |
Zheng Y, Lei Y, Hu C, et al. p53 regulates autophagic activity in senescent rat mesenchymal stromal cells[J]. Exp Gerontol, 2016, 75: 64-71.
|
18 |
Angelova PR, Abramov AY. Functional role of mitochondrial reactive Oxygen species in physiology[J]. Free Radic Biol Med, 2016, 100: 81-85.
|
19 |
Ghanta S, Tsoyi K, Liu X, et al. Mesenchymal stromal cells deficient in autophagy proteins are susceptible to oxidative injury and mitochondrial dysfunction[J]. Am J Respir Cell Mol Biol, 2017, 56(3): 300-309.
|
20 |
Chen H, Ge HA, Wu GB, et al. Autophagy prevents oxidative Stress-Induced loss of Self-Renewal capacity and stemness in human tendon stem cells by reducing ROS accumulation[J]. Cell Physiol Biochem, 2016, 39(6):2227-2238.
|
21 |
陈哲,刘洁,张斌. 自噬与骨髓间充质干细胞放射损伤的关系[J]. 中国组织工程研究, 2014, 18(28):4474-4478.
|
22 |
Robey PG, Kuznetsov SA, Riminucci M, et al. Bone marrow stromal cell assays: in vitro and in vivo[J]. Methods Mol Biol, 2014, 1130: 279-293.
|
23 |
Ratcliffe P, Koivunen P, Myllyharju J, et al. Update on hypoxia-inducible factors and hydroxylases in Oxygen regulatory pathways: from physiology to therapeutics[J]. Hypoxia (Auckland, N.Z.), 2017, 5(5):11-20.
|
24 |
Zhang Z, Yang M, Wang Y, et al. Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway[J]. Cell Biol Int, 2016, 40(6):671-685.
|
25 |
Li N, Zhang Q, Qian H, et al. Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway[J]. Chin Med J (Engl), 2014, 127(6):1046-1051.
|
26 |
Zhang Q, Yang YJ, Wang H, et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-Activated protein kinase/mammalian target of rapamycin pathway[J]. Stem Cells Dev, 2012, 21(8):1321-1332.
|
27 |
Li L, Li L, Zhang Z, et al. Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(5):362-367.
|
28 |
Dong W, Zhang P, Fu Y, et al. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2015, 230(3):680-690.
|
29 |
Han L, Liu M, Ye D, et al. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals[J]. Biomaterials, 2014, 35(9):2952-2960.
|
30 |
Pellegrini P, Dyczynski M, Sbrana FV, et al. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells[J]. Oncotarget, 2016, 7(24):35703-35723.
|
31 |
Eom YW, Oh JE, Lee JI, et al. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2014, 445(1):16-22.
|
32 |
Sbrana FV, Cortini M, Avnet S, et al. The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells[J]. Stem Cell Rev, 2016, 12(6):621-633.
|
33 |
Ejaz A, Mitterberger MC, Lu Z, et al. Weight loss upregulates the small GTPase DIRAS3 in human white adipose progenitor cells, which negatively regulates adipogenesis and activates autophagy via Akt-mTOR inhibition[J]. EBioMedicine, 2016, 6:149-161.
|
34 |
Nuschke A, Rodrigues M, Stolz DB, et al. Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation[J]. Stem Cell Res Ther, 2014, 5(6):140.
|
35 |
陈海璇. 干细胞因子SCF通过抑制AKT/mTOR信号通路促进脂肪干细胞的成骨分化[D]. 广州: 暨南大学, 2016.
|
36 |
Lee KW, Yook JY, Son MY, et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway[J]. Stem Cells Dev, 2010, 19(4):557-568.
|
37 |
王昕,马凤霞,卢士红, 等. 雷帕霉素对再生障碍性贫血患者骨髓间充质干细胞生物学功能的影响[J]. 中国实验血液学杂志, 2014, 22(3):762-766.
|
38 |
安莹. 自噬调控人颌骨骨髓间充质干细胞旁分泌功能的机制研究[D]. 西安: 第四军医大学, 2016 .
|
39 |
Ni X, Ou C, Guo J, et al. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro[J]. Int J Mol Med, 2017, 40(2):418-426.
|
40 |
陈全刚,陈仁金,袁红花. 细胞自噬促进脂肪干细胞向软骨细胞分化[J]. 黑龙江医药科学, 2016, 39(6):1-3, 8.
|
41 |
雷艳,赵红州,李荣春, 等. 低剂量免疫抑制剂诱导人脐带间充质干细胞自噬并促进CXCR4的分泌[J]. 中华器官移植杂志, 2017, 38(1):39-44.
|