1 |
Ramalho-Santos M, Yoon S, Matsuzaki Y, et al. "Stemness": transcriptional profiling of embryonic and adult stem cells[J]. Science, 2002, 298(5593):597-600.
|
2 |
Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinet, 1987, 20(3):263-272.
|
3 |
Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2001, 226(6):507-520.
|
4 |
Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord[J]. Stem Cells, 2004, 22(7):1330-1337.
|
5 |
Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells[J]. Stem Cells, 2007, 25(11):2886-2895.
|
6 |
Scheers I, Lombard C, Paganelli M, et al. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture[J]. PLoS One, 2013, 8(8):e71374.
|
7 |
Kim DW, Staples M, Shinozuka K, et al. Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications[J]. Int J Mol Sci, 2013, 14(6):11692-11712.
|
8 |
De Mara CS, Duarte AS, Sartori-Cintra AR, et al. Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6[J]. Rheumatol Int, 2013, 33(1):121-128.
|
9 |
Majore I, Moretti P, Stahl F, et al. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord[J]. Stem Cell Rev, 2011, 7(1):17-31.
|
10 |
Furumatsu T, Shukunami C, Amemiya-Kudo M, et al. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription[J]. Int J Biochem Cell Biol, 2010, 42(1):148-156.
|
11 |
Zheng P, Ju L, Jiang B, et al. Chondrogenic differentiation of human umbilical cord blood derived mesenchymal stem cells by co culture with rabbit chondrocytes[J]. Mol Med Rep, 2013, 8(4):1169-1182.
|
12 |
Wang L, Seshareddy K, Weiss ML, et al. Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering[J]. Tissue Eng Part A, 2009, 15(5):1009-1017.
|
13 |
Bailey MM, Wang L, Bode CJ, et al. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage[J]. Tissue Eng, 2007, 13(8):2003-2010.
|
14 |
Li X, Chang H, Luo H, et al. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro[J]. J Biomed Mater Res A, 2015, 103(3):1169-1175.
|
15 |
Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment[J]. Stem Cell Rev, 2012, 8(1):195-209.
|
16 |
Park YB, Song M, Lee CH, et al. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model[J]. J Orthop Res, 2015, 33(11):1580-1586.
|
17 |
Wang L, Tran I, Seshareddy K, et al. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering[J]. Tissue Eng Part A, 2009, 15(8):2259-2266.
|
18 |
Wang ZH, Li XL, He XJ, et al. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model[J]. Braz J Med Biol Res, 2014, 47(4):279-286.
|
19 |
Lu FZ, Fujino M, Kitazawa Y, et al. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood[J]. J Lab Clin Med, 2005, 146(5):271-278.
|
20 |
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12):4279-4295.
|
21 |
De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow[J]. Cells Tissues Organs, 2003, 174(3):101-109.
|
22 |
Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J]. Br J Haematol, 2005, 129(1):118-129.
|
23 |
Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J]. J Cell Biochem, 1997, 64(2):278-294.
|
24 |
Dragoo JL, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br, 2003, 85(5):740-747.
|
25 |
Khan WS, Tew SR, Adesida AB, et al. Human infrapatellar fat pad-derived stem cells Express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2[J]. Arthritis Res Ther, 2008, 10(4):R74.
|
26 |
Erickson GR, Gimble JM, Franklin DM, et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo[J]. Biochem Biophys Res Commun, 2002, 290(2):763-769.
|
27 |
Guilak F, Awad HA, Fermor B, et al. Adipose-derived adult stem cells for cartilage tissue engineering[J]. Biorheology, 2004, 41(3/4):389-399.
|
28 |
Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro[J]. Stem Cells, 2004, 22(7):1152-1167.
|
29 |
Nixon AJ, Goodrich LR, Scimeca MS, et al. Gene therapy in musculoskeletal repair[J]. Ann N Y Acad Sci, 2007, 1117(1):310-327.
|
30 |
Worster AA, Nixon AJ, Brower-Toland BD, et al. Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells[J]. Am J Vet Res, 2000, 61(9):1003-1010.
|
31 |
Blunk T, Sieminski AL, Gooch KJ, et al. Differential effects of growth factors on tissue-engineered cartilage[J]. Tissue Eng, 2002, 8(1):73-84.
|
32 |
Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6[J]. Arthritis Rheum, 2006, 54(4):1222-1232.
|
33 |
Hennig T, Lorenz H, Thiel A, et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6[J]. J Cell Physiol, 2007, 211(3):682-691.
|
34 |
Awad HA, Halvorsen YD, Gimble JM, et al. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells[J]. Tissue Eng, 2003, 9(6):1301-1312.
|
35 |
Hwang NS, Im SG, Wu PB, et al. Chondrogenic priming adipose-mesenchymal stem cells for cartilage tissue regeneration[J]. Pharm Res, 2011, 28(6):1395-1405.
|
36 |
Yoon IS, Chung CW, Sung JH, et al. Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold[J]. J Biosci Bioeng, 2011, 112(4):402-408.
|
37 |
Zhu Y, Liu T, Song K, et al. Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks[J]. Biotechnol J, 2009, 4(8):1198-1209.
|
38 |
Zhu Y, Liu T, Song K, et al. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells[J]. J Mater Sci Mater Med, 2009, 20(3):799-808.
|
39 |
Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat[J]. Biomaterials, 2012, 33(7):2016-2024.
|
40 |
Im GI, Kim HJ, Lee JH. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes[J]. Biomaterials, 2011, 32(19):4385-4392.
|
41 |
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
|
42 |
Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics[J]. Tissue Eng, 2005, 11(7/8):1198-1211.
|
43 |
Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases[J]. Arthritis Res Ther, 2008, 10(5):223.
|
44 |
Longobardi L, O'rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling[J]. J Bone Miner Res, 2006, 21(4):626-636.
|
45 |
Longobardi L, Granero-Moltó F, O'rear L, et al. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells[J]. Growth Factors, 2009, 27(5):309-320.
|
46 |
Cals FL, Hellingman CA, Koevoet W, et al. Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2012, 6(1):68-76.
|
47 |
Bai X, Li G, Zhao C, et al. BMP7 induces the differentiation of bone marrow-derived mesenchymal cells into chondrocytes[J]. Med Biol Eng Comput, 2011, 49(6):687-692.
|
48 |
Sekiya I, Larson BL, Vuoristo JT, et al. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma[J]. Cell Tissue Res, 2005, 320(2):269-276.
|
49 |
Zhao Q, Wang S, Tian J, et al. Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair[J]. J Mater Sci Mater Med, 2013, 24(3):793-801.
|
50 |
Kafienah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients[J]. Arthritis Rheum, 2007, 56(1):177-187.
|
51 |
Zhang W, Chen J, Tao J, et al. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold[J]. Biomaterials, 2013, 34(25):6046-6057.
|
52 |
Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein[J]. Science, 1996, 273(5275):613-622.
|
53 |
Zhang Z, Gupte MJ, Jin X, et al. Injectable peptide decorated functional nanofibrous hollow microspheres to direct stem cell differentiation and tissue regeneration[J]. Adv Funct Mater, 2015, 25(3):350-360.
|
54 |
Wang W, Li B, Yang J, et al. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs[J]. Biomaterials, 2010, 31(34):8964-8973.
|
55 |
Guo X, Zheng Q, Yang S, et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene[J]. Biomed Mater, 2006, 1(4):206-215.
|
56 |
Chen Z, Wei J, Zhu J, et al. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage[J]. Stem Cell Res Ther, 2016, 7(1):70.
|
57 |
Wang X, Li Y, Han R, et al. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair[J]. PLoS One, 2014, 9(12):e116061.
|
58 |
De Bari C, Dell'accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rheum, 2001, 44(8):1928-1942.
|
59 |
Djouad F, Bony C, Häupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells[J]. Arthritis Res Ther, 2005, 7(6):R1304-R1315.
|
60 |
Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Cell Tissue Res, 2007, 327(3):449-462.
|
61 |
Futami I, Ishijima M, Kaneko H, et al. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium[J]. PLoS One, 2012, 7(9):e45517.
|
62 |
Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source[J]. Arthritis Rheum, 2005, 52(8):2521-2529.
|
63 |
Natoli RM, Revell CM, Athanasiou KA. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage[J]. Tissue Eng Part A, 2009, 15(10):3119-3128.
|
64 |
Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration[J]. Tissue Eng Part B Rev, 2012, 18(4):301-311.
|
65 |
Qi J, Chen A, You H, et al. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds[J]. Biomed Mater, 2011, 6(1):015006-015016.
|
66 |
Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells[J]. Biochem Biophys Res Commun, 2001, 284(2):411-418.
|
67 |
Kim JH, Lee MC, Seong SC, et al. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor[J]. Tissue Eng Part A, 2011, 17(7/8):991-1002.
|
68 |
Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis[J]. Differentiation, 2008, 76(10):1044-1056.
|
69 |
Koga H, Muneta T, Nagase T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit[J]. Cell Tissue Res, 2008, 333(2):207-215.
|
70 |
Chang CH, Chen CC, Liao CH, et al. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells[J]. J Biomed Mater Res A, 2014, 102(7):2248-2257.
|
71 |
Pei M, He F, Boyce BM, et al. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs[J]. Osteoarthritis Cartilage, 2009, 17(6):714-722.
|
72 |
Kim YI, Ryu JS, Yeo JE, et al. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells[J]. Biochem Biophys Res Commun, 2014, 450(4):1593-1599.
|
73 |
Zhang F, Yao Y, Hao J, et al. A dual-functioning adenoviral vector encoding both transforming growth factor-beta3 and shRNA silencing type I collagen: construction and controlled release for chondrogenesis[J]. J Control Release, 2010, 142(1):70-77.
|