1 |
Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology[J]. Nat Med, 2019, 25(6):898-908.
|
2 |
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms[J]. Front Neurol, 2019, 10:282. doi: 10.3389/fneur.2019.00282.
|
3 |
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury[J]. Protein Cell, 2023, 14(9):635-652.
|
4 |
Fang YM, Chen WC, Zheng WJ, et al. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation[J]. Front Cell Neurosci, 2023, 17:1237641. doi: 10.3389/fncel.2023.1237641.
|
5 |
Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8(1):245. doi: 10.1038/s41392-023-01477-6.
|
6 |
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3:17018. doi: 10.1038/nrdp.2017.18.
|
7 |
Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials[J]. Lancet Neurol, 2022, 21(7):659-670.
|
8 |
Kim GU, Sung SE, Kang KK, et al. Therapeutic potential of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles for the treatment of spinal cord injury[J]. Int J Mol Sci, 2021, 22(24):13672. doi: 10.3390/ijms222413672.
|
9 |
Xia Y, Zhu J, Yang R, et al. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges[J]. Front Immunol, 2023, 14:1141601. doi: 10.3389/fimmu.2023.1141601.
|
10 |
Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for spinal cord injury[J]. Biomed Pharmacother, 2022, 145:112430. doi: 10.1016/j.biopha.2021.112430.
|
11 |
Zhou H, Jing S, Xiong W, et al. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1):316. doi: 10.1186/s12951-023-02001-2.
|
12 |
Kohno K, Shirasaka R, Yoshihara K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain[J]. Science, 2022, 376(6588):86-90.
|
13 |
He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities[J]. Cell Prolif, 2022, 55(9):e13275. doi: 10.1111/cpr.13275.
|
14 |
Gao X, Han Z, Huang C, et al. An anti-inflammatory and neuroprotective biomimetic nanoplatform for repairing spinal cord injury[J]. Bioact Mater, 2022, 18:569-582.
|
15 |
Ren Z, Qi Y, Sun S, et al. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair[J]. Stem Cells Dev, 2020, 29(23): 1467-1478.
|
16 |
Chen SY, Yang RL, Wu XC, et al. Mesenchymal stem cell transplantation: neuroprotection and nerve regeneration after spinal cord injury[J]. J Inflamm Res, 2023, 16:4763-4776.
|
17 |
Ma T, Wu J, Mu J, et al. Biomaterials reinforced MSCs transplantation for spinal cord injury repair[J]. Asian J Pharm Sci, 2022, 17(1):4-19.
|
18 |
Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9):1852. doi: 10.3390/ijms18091852.
|
19 |
Gnecchi M, Danieli P, Malpasso G, et al. Paracrine mechanisms of mesenchymal stem cells in tissue repair[J]. Methods Mol Biol, 2016, 1416:123-146.
|
20 |
Huang LY, Sun X, Pan HX, et al. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges[J]. World J Stem Cells, 2023, 15(5):385-399.
|
21 |
Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study[J]. Cytotherapy, 2009, 11(7):897-911.
|
22 |
Saito F, Nakatani T, Iwase M, et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study[J]. Restor Neurol Neurosci, 2012, 30(2):127-136.
|
23 |
Jiang PC, Xiong WP, Wang G, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury[J]. Exp Ther Med, 2013, 6(1):140-146.
|
24 |
Mendonca MV, Larocca TF, de Freitas Souza BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury[J]. Stem Cell Res Ther, 2014, 5(6):126. doi: 10.1186/scrt516.
|
25 |
El-Kheir WA, Gabr H, Awad MR, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients[J]. Cell Transplant, 2014, 23(6):729-745.
|
26 |
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5):637-647.
|
27 |
Lu Y, Zhang W, Tian Z, et al. The optimal transplantation strategy of umbilical cord mesenchymal stem cells in spinal cord injury: a systematic review and network meta-analysis based on animal studies[J]. Stem Cell Res Ther, 2022, 13(1):441. doi: 10.1186/s13287-022-03103-8.
|
28 |
Kang KS, Kim SW, Oh YH, et al. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study[J]. Cytotherapy, 2005, 7(4):368-373.
|
29 |
Cheng H, Liu X, Hua R, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury[J]. J Transl Med, 2014, 12:253. doi: 10.1186/s12967-014-0253-7.
|
30 |
Alonso-Goulart V, Carvalho LN, Marinho ALG, et al. Biomaterials and adipose-derived mesenchymal stem cells for regenerative medicine: a systematic review[J]. Materials (Basel), 2021, 14(16):4641. doi: 10.3390/ma14164641.
|
31 |
Menezes K, Nascimento MA, Goncalves JP, et al. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats[J]. PLoS One, 2014, 9(5):e96020. doi: 10.1371/journal.pone.0096020.
|
32 |
Kim Y, Lee SH, Kim WH, et al. Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs[J]. J Vet Sci, 2016, 17(1):123-126.
|
33 |
Ra JC, Shin IS, Kim SH, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans[J]. Stem Cells Dev, 2011, 20(8):1297-1308.
|
34 |
Hur JW, Cho TH, Park DH, et al. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial[J]. J Spinal Cord Med, 2016, 39(6):655-64.
|
35 |
Bydon M, Dietz AB, Goncalves S, et al. CELLTOP Clinical Trial: first report from a phase 1 trial of autologous adipose tissue-derived mesenchymal stem cells in the Treatment of Paralysis Due to traumatic spinal cord injury[J]. Mayo Clin Proc, 2020, 95(2):406-414.
|
36 |
Xu Y, Chen M, Zhang T, et al. Spinal cord regeneration using dental stem cell-based therapies[J]. Acta Neurobiol Exp (Wars), 2019, 79(4):319-327.
|
37 |
Martens W, Sanen K, Georgiou M, et al. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro[J]. FASEB J, 2014, 28(4):1634-1643.
|
38 |
Zhang J, Lu X, Feng G, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy[J]. Cell Tissue Res, 2016, 366(1):129-142.
|
39 |
Luo L, Albashari AA, Wang X, et al. Effects of transplanted heparin-poloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair[J]. Stem Cells Int, 2018, 2018:2398521. doi: 10.1155/2018/2398521.
|
40 |
Ying Y, Huang Z, Tu Y, et al. A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis[J]. Bioact Mater, 2022, 22:274-290.
|
41 |
Giovannelli L, Bari E, Jommi C, et al. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access[J]. Bioact Mater, 2023, 29:16-35.
|
42 |
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine[J]. Cells, 2021, 10(8):1959. doi: 10.3390/cells10081959.
|
43 |
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514.
|
44 |
Nakazaki M, Morita T, Lankford KL, et al. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-beta upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury[J]. J Extracell Vesicles, 2021, 10(11):e12137. doi: 10.1002/jev2.12137.
|
45 |
Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1):e0190358. doi: 10.1371/journal.pone.0190358.
|
46 |
Lu Y, Zhou Y, Zhang R, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier[J]. Front Neurosci, 2019, 13:209. doi: 10.3389/fnins.2019.00209.
|
47 |
Kang J, Guo Y. Human umbilical cord mesenchymal stem cells derived exosomes promote neurological function recovery in a rat spinal cord injury model[J]. Neurochem Res, 2022, 47(6):1532-1540.
|
48 |
Sung SE, Seo MS, Kim YI, et al. Human epidural AD-MSC exosomes improve function recovery after spinal cord injury in rats[J]. Biomedicines, 2022, 10(3):678. doi: 10.3390/biomedicines10030678.
|
49 |
Yan J, Zhang L, Li L, et al. Developmentally engineered bio-assemblies releasing neurotrophic exosomes guide in situ neuroplasticity following spinal cord injury[J]. Mater Today Bio, 2022, 16:100406. doi: 10.1016/j.mtbio.2022.100406.
|
50 |
Zhou W, Silva M, Feng C, et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis[J]. Stem Cell Res Ther, 2021, 12(1):174. doi: 10.1186/s13287-021-02248-2.
|
51 |
Han M, Yang H, Lu X, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair[J]. Nano Lett, 2022, 22(15):6391-6401.
|
52 |
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47. doi: 10.1186/s12974-020-1726-7.
|
53 |
Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury[J]. ACS Nano, 2019, 13(9):10015-10028.
|
54 |
Chen Y, Tian Z, He L, et al. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury[J]. Stem Cell Res Ther, 2021, 12(1):224. doi: 10.1186/s13287-021-02282-0.
|
55 |
Cizkova D, Cubinkova V, Smolek T, et al. Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury[J]. Int J Mol Sci, 2018, 19(3):870. doi: 10.3390/ijms19030870.
|
56 |
Cantinieaux D, Quertainmont R, Blacher S, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation[J]. PLoS One, 2013, 8(8):e69515. doi: 10.1371/journal.pone.0069515.
|
57 |
Kanekiyo K, Wakabayashi T, Nakano N, et al. Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats[J]. J Neurotrauma, 2018, 35(3):521-532.
|
58 |
Chen YT, Tsai MJ, Hsieh N, et al. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair[J]. Stem Cell Res Ther, 2019, 10(1):390. doi: 10.1186/s13287-019-1491-7.
|
59 |
Chudickova M, Vackova I, Machova Urdzikova L, et al. The effect of Wharton Jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury[J]. Int J Mol Sci, 2019, 20(18):4516. doi: 10.3390/ijms20184516.
|
60 |
Asadi-Golshan R, Razban V, Mirzaei E, et al. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats[J]. Asian Spine J, 2018, 12(5):785-793.
|
61 |
Sarveazad A, Toloui A, Moarrefzadeh A, et al. Mesenchymal stem cell-conditioned medium promotes functional recovery following spinal cord injury: a systematic review and meta-analysis[J]. Spine Surg Relat Res, 2022, 6(5):433-442.
|
62 |
Blando S, Anchesi I, Mazzon E, et al. Can a scaffold enriched with mesenchymal stem cells be a good treatment for spinal cord injury?[J]. Int J Mol Sci, 2022, 23(14):7545. doi: 10.3390/ijms23147545.
|
63 |
Levy O, Kuai R, Siren EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv, 2020, 6(30):eaba6884. doi: 10.1126/sciadv.aba6884.
|
64 |
Su X, Teng M, Zhang Y, et al. Decellularized extracellular matrix scaffold seeded with adipose-derived stem cells promotes neurorestoration and functional recovery after spinal cord injury through Wnt/beta-catenin signaling pathway regulation[J]. Biomed Mater, 2023, 19(1). doi: 10.1088/1748-605X/ad0fa1.
|
65 |
Ai A, Hasanzadeh E, Safshekan F, et al. Enhanced spinal cord regeneration by gelatin/alginate hydrogel scaffolds containing human endometrial stem cells and curcumin-loaded PLGA nanoparticles in rat[J]. Life Sci, 2023, 330:122035. doi: 10.1016/j.lfs.2023.122035.
|
66 |
He W, Shi C, Yin J, et al. Spinal cord decellularized matrix scaffold loaded with engineered basic fibroblast growth factor-overexpressed human umbilical cord mesenchymal stromal cells promoted the recovery of spinal cord injury[J]. J Biomed Mater Res B Appl Biomater, 2023, 111(1):51-61.
|
67 |
Chen C, Xu HH, Liu XY, et al. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats[J]. Regen Biomater, 2022, 9:rbac014. doi: 10.1093/rb/rbac014.
|
68 |
He W, Zhang X, Li X, et al. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells[J]. J Mater Chem B, 2022, 10(30):5753-5764.
|
69 |
Tang F, Tang J, Zhao Y, et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold[J]. Sci China Life Sci, 2022, 65(5):909-926.
|
70 |
Zhang L, Fan C, Hao W, et al. NSCs migration promoted and drug delivered exosomes-collagen scaffold via a bio-specific peptide for one-step spinal cord injury repair[J]. Adv Healthc Mater, 2021, 10(8):e2001896. doi: 10.1002/adhm.202001896.
|
71 |
Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury[J]. Nano Lett, 2020, 20(6):4298-4305.
|
72 |
Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, et al. Adipose-derived mesenchymal stem cell application combined with fibrin matrix promotes structural and functional recovery following spinal cord injury in rats[J]. Front Pharmacol, 2018, 9:343. doi: 10.3389/fphar.2018.00343.
|
73 |
Zaviskova K, Tukmachev D, Dubisova J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair[J]. J Biomed Mater Res A, 2018, 106(4):1129-1140.
|
74 |
Xiao Z, Tang F, Zhao Y, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells[J]. Cell Transplant, 2018, 27(6):907-915.
|
75 |
Wang N, Xiao Z, Zhao Y, et al. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury[J]. J Tissue Eng Regen Med, 2018, 12(2):e1154-e1163.
|
76 |
Peng Z, Gao W, Yue B, et al. Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization[J]. J Tissue Eng Regen Med, 2018, 12(3):e1725-e1736.
|
77 |
Ma YH, Zeng X, Qiu XC, et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord[J]. Biomaterials, 2018, 160:37-55.
|
78 |
Yang EZ, Zhang GW, Xu JG, et al. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury[J]. Acta Pharmacol Sin, 2017, 38(5):623-637.
|
79 |
Li X, Tan J, Xiao Z, et al. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury[J]. Sci Rep, 2017, 7:43559. doi: 10.1038/srep43559.
|
80 |
Li LM, Han M, Jiang XC, et al. Peptide-tethered hydrogel scaffold promotes recovery from spinal cord transection via synergism with mesenchymal stem cells[J]. ACS Appl Mater Interfaces, 2017, 9(4):3330-3342.
|
81 |
Li G, Che MT, Zhang K, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury[J]. Biomaterials, 2016, 83:233-248.
|
82 |
Zhang K, Liu Z, Li G, et al. Electro-acupuncture promotes the survival and differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid in gelatin sponge scaffold after rat spinal cord transection[J]. Stem Cell Rev Rep, 2014, 10(4):612-625.
|
83 |
Cholas R, Hsu HP, Spector M. Collagen scaffolds incorporating select therapeutic agents to facilitate a reparative response in a standardized hemiresection defect in the rat spinal cord[J]. Tissue Eng Part A, 2012, 18(19-20):2158-2172.
|
84 |
Li L, Xiao B, Mu J, et al. A MnO(2) Nanoparticle-Dotted hydrogel promotes spinal cord repair via regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells[J]. ACS Nano, 2019, 13(12):14283-14293.
|
85 |
Kim HY, Kumar H, Jo MJ, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment[J]. Nano Lett, 2018, 18(8):4965-4975.
|