1 |
Fowkes FG, Aboyans V, Fowkes FJ, et al. Peripheral artery disease: epidemiology and global perspectives[J]. Nat Rev Cardiol, 2017, 14(3): 156-170.
|
2 |
Teraa M, Gremmels H, Wijnand JGJ, et al. Cell Therapy for chronic limb-threatening ischemia: current evidence and future directions[J]. Stem Cells Transl Med, 2018, 7(12): 842-846.
|
3 |
Jaluvka F, Ihnat P, Madaric J, et al. Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia[J]. Int J Mol Sci, 2020, 21(23): 8999.
|
4 |
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 272.
|
5 |
Folkman J. Therapeutic angiogenesis in ischemic limbs[J]. Circulation, 1998, 97(12): 1108-1110.
|
6 |
Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial[J]. Lancet, 2002, 360(9331): 427-435.
|
7 |
Huang PP, Li SZ, Han MZ, et al. Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities[J]. Thromb Haemost, 2004, 91(3): 606-609.
|
8 |
Dash NR, Dash SN, Routray P, et al. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells[J]. Rejuvenation Res, 2009, 12(5): 359-366.
|
9 |
Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer[J]. Cell Transplant, 2010, 19(11): 1413-1424.
|
10 |
Jain P, Perakath B, Jesudason MR, et al. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study[J]. Ostomy Wound Manage, 2011, 57(7): 38-44.
|
11 |
Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product[J]. J Thorac Cardiovasc Surg, 2012, 144(2): 377-382.
|
12 |
Gupta PK, Krishna M, Chullikana A, et al. Administration of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells in critical limb ischemia due to Buerger's disease: phase II study report suggests clinical efficacy[J]. Stem Cells Transl Med, 2017, 6(3): 689-699.
|
13 |
Gupta PK, Chullikana A, Parakh R, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia[J]. J Transl Med, 2013, 11: 143.
|
14 |
Gupta PK, Shivashankar P, Rajkumar M, et al. Label extension, single- arm, phase III study shows efficacy and safety of stempeucel® in patients with critical limb ischemia due to atherosclerotic peripheral arterial disease[J]. Stem Cell Res Ther 2023, 14(1): 60.
|
15 |
Askø Andersen J, Rasmussen A, Frimodt-Møller M, et al. Novel topical allogeneic bone-marrow-derived mesenchymal stem cell treatment of hard-to-heal diabetic foot ulcers: a proof of concept study[J]. Stem Cell Res Ther, 2022, 13(1): 280.
|
16 |
Yan J, Liang J, Cao Y, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther, 2021, 12(1): 220.
|
17 |
Lu D, Jiang Y, Deng W, et al. Long-term outcomes of BMMSC compared with BMMNC for treatment of critical limb ischemia and foot ulcer in patients with diabetes[J]. Cell Transplant, 2019, 28(5): 645-652.
|
18 |
Nammian P, Asadi-Yousefabad S-L, Daneshi S, et al. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy[J]. Stem Cell Res Ther, 2021, 12(1): 58.
|
19 |
Carstens MH, Quintana FJ, Calderwood ST, et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: Safety and evidence of efficacy at 1 year[J]. Stem Cells Transl Med, 2021, 10(8): 1138-1147.
|
20 |
Ra JC, Jeong EC, Kang SK, et al. A prospective, nonrandomized, no placebo-controlled, phase I/II clinical trial assessing the safety and efficacy of intramuscular injection of autologous adipose tissue-derived mesenchymal stem cells in patients with severe Buerger's disease[J]. Cell Med, 2016, 9(3): 87-102.
|
21 |
Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia[J]. Cytotherapy, 2014, 16(2): 245-257.
|
22 |
Katagiri T, Kondo K, Shibata R, et al. Therapeutic angiogenesis using autologous adipose-derived regenerative cells in patients with critical limb ischaemia in Japan: a clinical pilot study[J]. Sci Rep, 2020, 10(1): 16045.
|
23 |
Zhang C, Huang L, Wang X, et al. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: a phase I pilot study with a 3-year follow-up[J]. Stem Cell Res Ther, 2022, 13(1): 451.
|
24 |
Yang SS, Kim NR, Park KB, et al. A phase I study of human cord blood-derived mesenchymal stem cell therapy in patients with peripheral arterial occlusive disease[J]. Int J Stem Cells, 2013, 6(1): 37-44.
|
25 |
Kim SW, Han H, Chae GT, et al. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic limb disease animal model[J]. Stem Cells, 2006, 24(6): 1620-1626.
|
26 |
Gao WH, Gao HY, Li YT, et al. Effectiveness of umbilical cord mesenchymal stem cells in patients with critical limb ischemia[J]. Med Clin (Barc), 2019, 153(9):341-346.
|
27 |
Lozano Navarro LV, Chen X, Giratá Viviescas LT, et al. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential[J]. Stem Cell Res Ther, 2022, 13(1): 345.
|
28 |
Gu Y, Rampin A, Alvino VV, et al. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy[J]. Curr Diab Rep, 2021, 21(3): 11.
|
29 |
Annex BH, Cooke JP. New directions in therapeutic angiogenesis and arteriogenesis in peripheral arterial disease[J]. Circ Res, 2021, 128(12):1944-1957.
|
30 |
Mousaei Ghasroldasht M, Seok J, Park HS, et al. Stem cell therapy: from idea to clinical practice[J]. Int J Mol Sci, 2022, 23(5): 2850.
|
31 |
|
32 |
Khademhosseini A, Langer R. A decade of progress in tissue engineering[J]. Nat Protoc, 2016, 11(10): 1775-1781.
|
33 |
Dabrowska S, Andrzejewska A, Janowski M, et al. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases[J]. Front Immunol, 2021, 11: 591065. doi: 10.3389/fimmu.2020.591065.
|
34 |
Hu G, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice[J]. Stem Cell Res Ther, 2015, 6(1): 10.
|
35 |
Qiu G, Zheng G, Ge M, et al. Functional proteins of mesenchymal stem cell-derived extracellular vesicles[J]. Stem Cell Res Ther, 2019, 10(1): 359.
|
36 |
Figliolini F, Ranghino A, Grange C, et al. Extracellular vesicles from adipose stem cells prevent muscle damage and inflammation in a mouse model of hind limb ischemia: role of neuregulin-1[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1): 239-254.
|
37 |
Gangadaran P, Rajendran RL, Lee HW, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia[J]. J Control Release, 2017, 264: 112-126.
|
38 |
Herrmann I K, Wood M J A, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform[J]. Nat Nanotechnol, 2021, 16(7): 748-759.
|
39 |
Ren Y, Aierken A, Zhao L, et al. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven functional hydrogel for chronic diabetic wound healing[J]. Carbohydr Polym, 2022, 288: 119404.
|
40 |
Kostyushev D, Kostyusheva A, Brezgin S, et al. Gene Editing by Extracellular Vesicles[J]. Int J Mol Sci, 2020, 21(19): 7362.
|
41 |
Duan L, Xu L, Xu X, et al. Exosome-mediated delivery of gene vectors for gene therapy[J]. Nanoscale, 2021, 13(3): 1387-1397.
|
42 |
Zhang Y, Gao S, Liang K, et al. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs[J]. Sci Adv, 2021, 7(27): eabi4379. doi: 10.1126/sciadv.abi4379.
|
43 |
Kuang S, He F, Liu G, et al. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis[J]. Biomaterials, 2021, 275: 120963.
|
44 |
Hu Y, Tao R, Chen L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis[J]. J Nanobiotechnology, 2021, 19(1): 150.
|
45 |
Ding J, Wang X, Chen B, et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J]. BioMed Res Int, 2019, 2019: 9742765. doi: 10.1155/2019/9742765.
|
46 |
Pendse S, Kale V, Vaidya A. Extracellular vesicles isolated from mesenchymal stromal cells primed with hypoxia: novel strategy in regenerative medicine[J]. Curr Stem Cell Res Ther, 2021, 16(3): 243-261.
|
47 |
Chu Z, Huang Q, Ma K, et al. Novel neutrophil extracellular trap- related mechanisms in diabetic wounds inspire a promising treatment strategy with hypoxia-challenged small extracellular vesicles[J]. Bioact Mater, 2023, 27: 257-270.
|
48 |
Yang K, Li D, Wang M, et al. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells[J]. Stem Cell Res Ther, 2019, 10(1): 358.
|
49 |
Liu G, Zhou Y, Zhang X, et al. Advances in hydrogels for stem cell therapy: regulation mechanisms and tissue engineering applications[J]. J Mater Chem B, 2022, 10(29): 5520-5536.
|
50 |
Farhat W, Hasan A, Lucia L, et al. Hydrogels for advanced stem cell therapies: a biomimetic materials approach for enhancing natural tissue function[J]. IEEE Rev Biomed Eng, 2019, 12: 333-351.
|
51 |
Khayambashi P, Iyer J, Pillai S, et al. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering[J]. Int J Mol Sci, 2021, 22(2): 684.
|
52 |
Tsiapalis D, O'Driscoll L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications[J]. Cells, 2020, 9(4): 991.
|
53 |
Huang J, Xiong J, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021, 13(19): 8740-8750.
|
54 |
Jiang T, Liu S, Wu Z, et al. ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress[J]. Mater Today Bio, 2022, 16: 100365.
|
55 |
Peng H, Li H, Zhang X, et al. 3D-exosomes laden multifunctional hydrogel enhances diabetic wound healing via accelerated angiogenesis[J]. Chemical engineering journal, 2023, 475: 146238.
|
56 |
Zhang K, Zhao X, Chen X, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Appl Mater Interfaces, 2018, 10(36): 30081-30091.
|
57 |
Zha Y, Li Y, Lin T, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409.
|
58 |
Zhong Y, Ma H, Lu Y, et al. Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds[J]. Tissue Cell, 2023, 85: 102213. doi: 10.1016/j.tice.2023.102213.
|
59 |
Qin H, Du L, Luo Z, et al. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism[J]. Front Bioeng Biotechnol, 2022, 10: 1080430. doi: 10.3389/fbioe.2022.1080430.
|
60 |
Razavi M, Rezaee M, Telichko A, et al. The paracrine function of mesenchymal stem cells in response to pulsed focused ultrasound[J]. Cell Transplant, 2020, 29: 963689720965478. doi: 10.1177/0963689720965478.
|
61 |
Tebebi PA, Kim SJ, Williams RA, et al. Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound[J]. Sci Rep, 2017, 7: 41550. doi: 10.1038/srep41550.
|
62 |
Xia P, Shi Y, Wang X, et al. Advances in the application of low- intensity pulsed ultrasound to mesenchymal stem cells[J]. Stem Cell Res Ther, 2022, 13(1): 214.
|