1 |
Thennavan A, Beca F, Xia Y, et al. Molecular analysis of TCGA breast cancer histologic types[J]. Cell Genom, 2021, 1(3):100067. doi: 10.1016/j.xgen.2021.100067.
|
2 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
|
3 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
|
4 |
Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer prevention[J]. Nat Rev Cancer, 2020, 20(8):417-436.
|
5 |
Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets[J]. Semin Cancer Biol, 2020, 60:14-27.
|
6 |
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024):1559-1564.
|
7 |
李卓林, 贾如雪, 吴亚婷, 等. 肿瘤转移的分子机制及靶向干预研究新进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2022, 12 (1):51-58.
|
8 |
Zhang B, Gu Y, Jiang G. Expression and prognostic characteristics of m6A RNA methylation regulators in breast cancer[J]. Front Genet, 2020, 11:604597.
|
9 |
Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update[J]. Nucleic Acids Res, 2022, 50(D1):D231-D235.
|
10 |
Kan RL, Chen J, Sallam T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation[J]. Trends Genet, 2022, 38(2):182-193.
|
11 |
Wiener D, Schwartz S. The epitranscriptome beyond m6A[J]. Nat Rev Genet, 2021, 22(2):119-131.
|
12 |
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189.
|
13 |
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887.
|
14 |
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29.
|
15 |
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7):1187-1200.
|
16 |
Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m6A methylation[J]. Trends Genet, 2020, 36(1):44-52.
|
17 |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397):201-206.
|
18 |
Deng LJ, Deng WQ, Fan SR, et al. m 6A modification: recent advances, anticancer targeted drug discovery and beyond[J]. Mol Cancer, 2022, 21(1):52.doi: 10.1186/s12943-022-01510-2.
|
19 |
An Y, Duan H. The role of m 6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1):14.doi: 10.1186/s12943-022-01500-4.
|
20 |
Liu L, Li H, Hu D, et al. Insights into N6-methyladenosine and programmed cell death in cancer[J]. Mol Cancer, 2022, 21(1):32. doi: 10.1186/s12943-022-01508-w.
|
21 |
Liu Y, Zhu T, Jiang Y, et al. The key role of RNA modification in breast cancer[J]. Front Cell Dev Biol, 2022, 10:885133.doi: 10.3389/fcell.2022.885133.
|
22 |
Zheng F, Du F, Qian H, et al. Expression and clinical prognostic value of m 6A RNA methylation modification in breast cancer[J]. Biomark Res, 2021, 9(1):28.doi: 10.1186/s40364-021-00285-w.
|
23 |
Tai J, Wang L, Guo H, et al. Prognostic implications of N6-methyladenosine RNA regulators in breast cancer[J]. Sci Rep, 2022, 12(1):1222. doi: 10.1038/s41598-022-05125-x.
|
24 |
Fang Z, Mei W, Qu C, et al. Role of m 6A writers, erasers and readers in cancer[J]. Exp Hematol Oncol, 2022, 11(1):45.doi: 10.1186/s40164-022-00298-7.
|
25 |
Wang T, Kong S, Tao M, er al. The potential role of RNA N6-methyladenosine in cancer progression[J]. Mol Cancer, 2020, 19(1):88.doi: 10.1186/s12943-020-01204-7.
|
26 |
Zheng F, Du F, Zhao J, et al. The emerging role of RNA N6-methyladenosine methylation in breast cancer[J]. Biomark Res, 2021, 9(1):39.doi: 10.1186/s40364-021-00295-8.
|
27 |
Zhao C, Ling X, Xia Y, et al. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis[J]. Cancer Cell Int, 2021, 21(1):441.doi: 10.1186/s12935-021-02113-5.
|
28 |
Chen F, Chen Z, Guan T, et al. N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis[J]. Cancer Res, 2021, 81(11):2847-2860.
|
29 |
Ramamoorthi G, Kodumudi K, Gallen C, et al. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities[J]. Semin Cancer Biol, 2022, 78:78-89.
|
30 |
Xie J, Ba J, Zhang M, et al. The m6A methyltransferase METTL3 promotes the stemness and malignant progression of breast cancer by mediating m6A modification on SOX2[J]. J BUON, 2021, 26(2):444-449.
|
31 |
Li Z, Yang HY, Dai XY, et al. CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression[J]. Int J Biol Sci, 2021, 17(5):1178-1190.
|
32 |
Ruan HG, Gu WC, Xia W, et al. METTL3 is suppressed by circular RNA circMETTL3/miR-34c-3p signaling and limits the tumor growth and metastasis in triple negative breast cancer[J]. Front Oncol, 2021, 11:778132.doi: 10.3389/fonc.2021.778132.
|
33 |
Shi Y, Zheng C, Jin Y, et al. Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m 6A methylation-mediated COL3A1 up-regulation[J]. Front Oncol, 2020, 10:1126.doi: 10.3389/fonc.2020.01126.
|
34 |
Guan Q, Lin H, Miao L, et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer[J]. J Hematol Oncol, 2022, 15(1):13.doi: 10.1186/s13045-022-01231-5.
|
35 |
Gong PJ, Shao YC, Yang Y, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer[J]. Front Oncol, 2020, 10:578963.doi: 10.3389/fonc.2020.578963.
|
36 |
Zhou H, Yin K, Zhang Y, et al. The RNA m 6A writer METTL14 in cancers: Roles, structures, and applications[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2):188609.doi: 10.1016/j.bbcan.2021.188609.
|
37 |
Dong XF, Wang Y, Huang BF, et al. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification[J]. Biomed Res Int, 2020, 2020:8823270.doi: 10.1155/2020/8823270.
|
38 |
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019, 19(1):326. doi: 10.1186/s12885-019-5538-z.
|
39 |
Sun T, Wu Z, Wang X, et al. LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression[J]. Oncogene, 2020, 39(31):5358-5372.
|
40 |
Wang CQ, Tang CH, Wang Y, et al. Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis[J]. Sci Rep, 2022, 12(1):1023. doi: 10.1038/s41598-022-05035-y.
|
41 |
Qian JY, Gao J, Sun X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner[J]. Oncogene, 2019, 38(33):6123-6141.
|
42 |
Zhang X, Dai XY, Qian JY, et al. SMC1A regulated by KIAA1429 in m6A-independent manner promotes EMT progress in breast cancer[J]. Mol Ther Nucleic Acids, 2021, 27:133-146.
|
43 |
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019, 18(1):46. doi: 10.1186/s12943-019-1004-4.
|
44 |
Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer[J]. Cancer Commun (Lond), 2020, 40(10):484-500.
|
45 |
Jeschke J, Collignon E, Al Wardi C, et al. Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors[J]. Nat Cancer, 2021, 2(6):611-628.
|
46 |
Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol. 2022 Jan 21; 15(1):8.doi: 10.1186/s13045-022-01224-4.
|
47 |
Tang B, Yang Y, Kang M, et al. m 6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020, 19(1):3. doi: 10.1186/s12943-019-1128-6.
|
48 |
Jin D, Guo J, Wu Y, Y et al. m 6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1):40.doi: 10.1186/s12943-020-01161-1.
|
49 |
Fry NJ, Law BA, Ilkayeva OR, et al. N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression[J]. Oncotarget, 2018, 9(58):31231-31243.
|
50 |
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019, 19(1):326.doi: 10.1186/s12885-019-5538-z.
|
51 |
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016, 113(14):E2047-56.
|
52 |
Lan Q, Liu PY, Bell JL, et al. The Emerging roles of RNA m6A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance[J]. Cancer Res, 2021, 81(13):3431-3440.
|
53 |
Wu H, Feng J, Wu J, et al. Prognostic value of comprehensive typing based on m 6A and gene cluster in TNBC[J]. J Cancer Res Clin Oncol, 2022. doi: 10.1007/s00432-022-04345-y.
|
54 |
Kim HY, Ha Thi HT, et al. IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor[J]. Cancer Lett, 2018, 415:30-39.
|
55 |
Song X, Chen B, Liang Y, et al. CircEIF3H-IGF2BP2-HuR scaffold complex promotes TNBC progression via stabilizing HSPD1/RBM8A/G3BP1 mRNA[J]. Cell Death Discov, 2022, 8(1):261.doi: 10.1038/s41420-022-01055-9.
|
56 |
Sui L, Sanders A, Jiang WG, et al. Deregulated molecules and pathways in the predisposition and dissemination of breast cancer cells to bone[J]. Comput Struct Biotechnol J, 2022, 20:2745-2758.
|
57 |
Chang G, Shi L, Ye Y, et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis[J]. Cancer Cell, 2020, 38(6):857-871.e7.
|
58 |
Lin Y, Jin X, Nie Q, et al. YTHDF3 facilitates triple-negative breast cancer progression and metastasis by stabilizing ZEB1 mRNA in an m 6A-dependent manner[J]. Ann Transl Med, 2022, 10(2):83.doi: 10.21037/atm-21-6857.
|
59 |
Tan B, Zhou K, Liu W, et al. RNA N6 -methyladenosine reader YTHDC1 is essential for TGF-beta-mediated metastasis of triple negative breast cancer[J]. Theranostics, 2022, 12(13):5727-5743.
|
60 |
Dieci MV, Miglietta F, Griguolo G, et al. Biomarkers for HER2-positive metastatic breast cancer: Beyond hormone receptors[J]. Cancer Treat Rev, 2020, 88:102064.doi: 10.1016/j.ctrv.2020.102064.
|
61 |
Chen H, Yu Y, Yang M, et al. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner[J]. Cell Biosci, 2022, 12(1):19.doi: 10.1186/s13578-022-00759-w.
|
62 |
Yao X, Li W, Li L, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis[J]. Cell Death Dis, 2022, 13(3):258.doi: 10.1038/s41419-022-04711-1.
|
63 |
Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3):270-288.
|
64 |
Lv W, Wang Y, Zhao C, et al. Identification and Validation of m 6A-related lncRNA signature as potential predictive biomarkers in breast cancer[J]. Front Oncol, 2021, 11:745719.doi: 10.3389/fonc.2021.745719.
|
65 |
Shi W, Tang Y, Lu J, et al. MIR210HG promotes breast cancer progression by IGF2BP1 mediated m6A modification[J]. Cell Biosci, 2022, 12(1):38. doi: 10.1186/s13578-022-00772-z.
|
66 |
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016, 135(8):851-867.
|
67 |
Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564.
|
68 |
Zhou KI, Shi H, Lyu R, et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG[J]. Mol Cell, 2019, 76(1):70-81.e9.
|
69 |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6):1299-1308.
|
70 |
Hwang SJ, Seol HJ, Park YM, et al. MicroRNA-146a suppresses metastatic activity in brain metastasis[J]. Mol Cells, 2012, 34(3):329-334.
|
71 |
Wang S, Zou X, Chen Y, et al. Effect of N6-methyladenosine regulators on progression and prognosis of triple-negative breast cancer[J]. Front Genet, 2021, 11:580036.doi: 10.3389/fgene.2020.580036.
|
72 |
Lv W, Tan Y, Xiong M, et al. Analysis and validation of m 6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression[J]. J Transl Med, 2021, 19(1):527. doi: 10.1186/s12967-021-03196-4.
|
73 |
Moran-Jones K, Grindlay J, Jones M, et al. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration[J]. Cancer Res, 2009, 69(24):9219-9227.
|
74 |
Zhu S, Hou J, Gao H, et al. SUMOylation of HNRNPA2B1 modulates RPA dynamics during unperturbed replication and genotoxic stress responses[J]. Mol Cell, 2023, 83(4):539-555.e7.
|
75 |
Stockley J, Villasevil ME, Nixon C, et al. The RNA-binding protein hnRNPA2 regulates β-catenin protein expression and is overexpressed in prostate cancer[J]. RNA Biol, 2014, 11(6):755-765.
|
76 |
Liu Y, Li H, Liu F, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 is a negative regulator of human breast cancer metastasis by maintaining the balance of multiple genes and pathways[J]. EBio Medicine, 2020, 51:102583. doi: 10.1016/j.ebiom.2019.11.044.
|
77 |
Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174:105937.doi: 10.1016/j.phrs.2021.105937.
|
78 |
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor[J]. J Am Chem Soc, 2012, 134(43):17963-17971.
|
79 |
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1):373-384.
|
80 |
Selberg S, Seli N, Kankuri E, et al. Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors[J]. ACS Omega, 2021, 6(20):13310-13320.
|
81 |
Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1):8.doi: 10.1186/s13045-022-01224-4.
|
82 |
Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox[J]. Cell, 2022, 185(5):764-776.
|