1 |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674.
|
2 |
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331 (6024):1559-1564.
|
3 |
Turajlic S, Swanton C. Metastasis as an evolutionary process[J]. Science, 2016, 352(6282):169-175.
|
4 |
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2):69-84.
|
5 |
Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis[J]. Dev Cell, 2019, 49(3):361-374.
|
6 |
Stemmler MP, Eccles RL, Brabletz S, et al. Non-redundant functions of EMT transcription factors[J]. Nat Cell Biol, 2019, 21(1):102-112.
|
7 |
Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2):156-172.
|
8 |
Li Q, Wang C, Wang Y, et al. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways[J]. J Exp Clin Cancer Res, 2018, 37(1):231.
|
9 |
Nfonsam VN, Nfonsam LE, Chen D, et al. COMP gene coexpresses with EMT genes and is associated with poor survival in colon cancer patients[J]. J Surg Res, 2019, 233:297-303.
|
10 |
Sun L, Wang Y, Wang L, et al. Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP[J]. J Exp Clin Cancer Res, 2019, 38(1):170.
|
11 |
Zhong W, Hou H, Liu T, et al. Cartilage oligomeric matrix protein promotes epithelial-mesenchymal transition by interacting with transgelin in colorectal cancer[J]. Theranostics, 2020, 10(19):8790-8806.
|
12 |
Chen Z, He S, Zhan Y, et al. TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine[J]. EBio Medicine, 2019, 47:208-220.
|
13 |
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487):eaaw5473. doi: 10.1126/science.aaw5473.
|
14 |
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, et al. EMT factors and metabolic pathways in cancer[J]. Front Oncol, 2020, 10:499. doi: 10.3389/fonc.2020.00499.
|
15 |
Knott SRV, Wagenblast E, Khan S, et al. Asparagine bioavailability governs metastasis in a model of breast cancer[J]. Nature, 2018, 554(7692):378-381.
|
16 |
Wang X, Liu R, Zhu W, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis[J]. Nature, 2019, 571(7763):127-131.
|
17 |
Wu JY, Huang TW, Hsieh YT, et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor[J]. Mol Cell, 2020, 77(2):213-227.e5.
|
18 |
Hua W, Ten Dijke P, Kostidis S, et al. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer[J]. Cell Mol Life Sci, 2020, 77(11):2103-2123.
|
19 |
Sheng W, Shi X, Lin Y, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling[J]. J Exp Clin Cancer Res, 2020, 39(1):16. doi: 10.1186/s13046-020-1521-4.
|
20 |
Wang H, Yang X, Guo Y, et al. HERG1 promotes esophageal squamous cell carcinoma growth and metastasis through TXNDC5 by activating the PI3K/AKT pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):324. doi: 10.1186/s13046-019-1284-y.
|
21 |
Li J, Yang R, Dong Y, et al. Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2[J]. J Exp Clin Cancer Res, 2019, 38(1):38. doi: 10.1186/s13046-019-1046-x.
|
22 |
Hsu PC, Yang CT, Jablons DM, et al. The crosstalk between src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC)[J]. Cancers (Basel), 2020, 12(6):1361. doi: 10.3390/cancers12061361.
|
23 |
Lin YT, Wu KJ. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling[J]. J Biomed Sci, 2020, 27(1):39. doi: 10.1186/s12929-020-00632-3.
|
24 |
Lu C, Sidoli S, Kulej K, et al. Coordination between TGF-β cellular signaling and epigenetic regulation during epithelial to mesenchymal transition[J]. Epigenetics Chromatin, 2019, 12(1):11. doi: 10.1186/s13072-019-0256-y.
|
25 |
Kim BN, Ahn DH, Kang N, et al. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer[J]. Sci Rep, 2020, 10(1):10597.doi: 10.1038/s41598-020-67325-7.
|
26 |
Morin A, Goncalves J, Moog S, et al. TET-mediated hypermethylation primes SDH-Deficient cells for HIF2α-driven mesenchymal transition[J]. Cell Rep, 2020, 30(13):4551-4566.e7.
|
27 |
Wu JE, Wu YY, Tung CH, et al. DNA methylation maintains the CLDN1-EPHB6-SLUG axis to enhance chemotherapeutic efficacy and inhibit lung cancer progression[J]. Theranostics, 2020, 10(19):8903-8923.
|
28 |
Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer[J]. Nat Cell Biol, 2019, 21(2):152-161.
|
29 |
Nihan Kilinc A, Sugiyama N, Reddy Kalathur RK, et al. Histone deacetylases, Mbd3/NuRD, and Tet2 hydroxylase are crucial regulators of epithelial-mesenchymal plasticity and tumor metastasis[J]. Oncogene, 2020, 39(7):1498-1513.
|
30 |
Jiang H, Cao HJ, Ma N, et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis[J]. Proc Natl Acad Sci U S A, 2020, 117(9):4770-4780.
|
31 |
Zhao BS, Roundtree IA, He C. Posttranscriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1):31-42.
|
32 |
Wurth L, Gebauer F. RNA-binding proteins, multifaceted translational regulators in cancer[J]. Biochim Biophys Acta, 2015, 1849(7):881-886.
|
33 |
Mihailovich M, Militti C, Gabaldon T, et al. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression[J]. Bioessays, 2010, 32(2):109-118.
|
34 |
Wurth L, Papasaikas P, Olmeda D, et al. UNR/CSDE1 drives a post-transcriptional program to promote melanoma invasion and metastasis[J]. Cancer Cell, 2016, 30(5):694-707.
|
35 |
Martinez-Useros J, Garcia-Carbonero N, Li W, et al. UNR/CSDE1 expression is critical to maintain invasive phenotype of colorectal cancer through regulation of c-MYC and epithelial-to-mesenchymal transition[J]. J Clin Med, 2019, 8(4):560. doi: 10.3390/jcm8040560.
|
36 |
Kim J, Yao F, Xiao Z, et al. MicroRNAs and metastasis: small RNAs play big roles[J]. Cancer Metastasis Rev, 2018, 37(1):5-15.
|
37 |
Petri BJ, Klinge CM. Regulation of breast cancer metastasis signaling by miRNAs[J]. Cancer Metastasis Rev, 2020, 39(3):837-886.
|
38 |
Zhou Y, Huan L, Wu Y, et al. LncRNA ID2-AS1 suppresses tumor metastasis by activating the HDAC8/ID2 pathway in hepatocellular carcinoma[J]. Cancer Lett, 2020, 469:399-409.
|
39 |
Ma S, Kong S, Wang F, et al. CircRNAs: biogenesis, functions, and role in drug-resistant tumours[J]. Mol Cancer, 2020, 19(1):119. doi: 10.1186/s12943-020-01231-4.
|
40 |
Feng S, Liu W, Bai X, et al. LncRNA-CTS promotes metastasis and epithelial-to-mesenchymal transition through regulating miR-505/ZEB2 axis in cervical cancer[J]. Cancer Lett, 2019, 465:105-117.
|
41 |
Chen Q, Liu T, Bao Y, et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway[J]. Cancer Lett, 2020, 469:68-77.
|
42 |
Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1):104. doi: 10.1186/s12943-020-01216-3.
|
43 |
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1):103. doi: 10.1186/s12943-019-1033-z.
|
44 |
Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3):270-288.
|
45 |
Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1):142.
|
46 |
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer[J]. Mol Cancer, 2020, 19(1):106.
|
47 |
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020, 19(1):46.
|
48 |
Chen RX, Chen X, Xia LP, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1):4695.
|
49 |
Chen Y, Lin Y, Shu Y, et al. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1):94.
|
50 |
Yi YC, Chen XY, Zhang J, et al. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1):121.
|
51 |
Yang X, Liu M, Li M, et al. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology[J]. Mol Cancer, 2020, 19(1):64.
|
52 |
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications[J]. Signal Transduct Target Ther, 2020, 5(1):90.
|
53 |
Li J, Xu J, Li L, et al. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway[J]. Theranostics, 2020, 10(14):6467-6482.
|
54 |
Du L, Fakih MG, Rosen ST, et al. SUMOylation of E2F1 regulates expression of EZH2[J]. Cancer Res, 2020, 80(19):4212-4223.
|
55 |
Li F, Yuan P, Rao M, et al. piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis[J]. Nat Cell Biol, 2020, 22(4):425-438.
|
56 |
Yan F, Qian M, He Q, et al. The posttranslational modifications of Hippo-YAP pathway in cancer[J]. Biochim Biophys Acta Gen Subj, 2020, 1864(1):129397. doi: 10.1016/j.bbagen.2019.07.006.
|
57 |
Zhang Z, Du J, Wang S, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ[J]. Mol Cell, 2019, 73(1):7-21.e7.
|
58 |
Meng J, Ai X, Lei Y, et al. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma[J]. Theranostics, 2019, 9(2):573-587.
|
59 |
Parua PK, Booth GT, Sansó M, et al. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II[J]. Nature, 2018, 558(7710):460-464.
|
60 |
Kecman T, Ku's K, Heo DH, et al. Elongation/termination factor exchange mediated by pp1 phosphatase orchestrates transcription termination[J]. Cell Rep, 2018, 25(1):259-269.e5.
|
61 |
Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey[J]. Dev Cell, 2019, 49(3):332-346.
|
62 |
Barillari G. The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process[J]. Int J Mol Sci, 2020, 21(12):4526. doi: 10.3390/ijms21124526.
|
63 |
Liu F, Zhang H, Xie F, et al. Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis[J]. Oncogene, 2020, 39(8):1696-1709.
|
64 |
Tong WH, Mu JF, Zhang SP. LINC00346 accelerates the malignant progression of colorectal cancer via competitively binding to miRNA-101-5p/MMP9[J]. Eur Rev Med Pharmacol Sci, 2020, 24(12):6639-6646.
|
65 |
Fayard B, Bianchi F, Dey J, et al. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression[J]. Cancer Res, 2009, 69(14):5690-5698.
|
66 |
Zhang J, Luo A, Huang F, et al. SERPINE2 promotes esophageal squamous cell carcinoma metastasis by activating BMP4[J]. Cancer Lett, 2020, 469:390-398.
|
67 |
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer[J]. J Clin Invest, 2020, 130(10):5074-5087.
|
68 |
Borriello L, Karagiannis GS, Duran CL, et al. The role of the tumor microenvironment in tumor cell intravasation and dissemination[J]. Eur J Cell Biol, 2020, 99(6):151098. doi: 10.1016/j.ejcb.2020.151098.
|
69 |
Follain G, Herrmann D, Harlepp S, et al. Fluids and their mechanics in tumour transit: shaping metastasis[J]. Nat Rev Cancer, 2020, 20(2):107-124.
|
70 |
Haemmerle M, Taylor ML, Gutschner T, et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling[J]. Nat Commun, 2017, 8(1):310.doi: 10.1038/s41467-017-00411-z.
|
71 |
Liu X, Taftaf R, Kawaguchi M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models[J]. Cancer Discov, 2019, 9(1):96-113.
|
72 |
Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature, 2019, 566(7745):553-557.
|
73 |
Gao Y, Bado I, Wang H, et al. Metastasis organotropism: redefining the congenial soil[J]. Dev Cell, 2019, 49(3):375-391.
|
74 |
Wortzel I, Dror S, Kenific CM, et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell, 2019, 49(3):347-360.
|
75 |
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1):9-17.
|
76 |
Huang Y, Song N, Ding Y, et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis[J]. Cancer Res, 2009, 69(19):7529-7537.
|
77 |
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718):382-386.
|
78 |
Shu S, Yang Y, Allen CL, et al. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment[J]. Sci Rep, 2018, 8(1):12905. doi: 10.1038/s41598-018-31323-7.
|
79 |
Ogawa K, Lin Q, Li L, et al. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis[J]. Cancer Lett, 2020, 481:63-75.
|
80 |
Keklikoglou I, Cianciaruso C, Güç E, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models[J]. Nat Cell Biol, 2019, 21(2):190-202.
|
81 |
Feng W, Dean DC, Hornicek FJ, et al. Exosomes promote pre-metastatic niche formation in ovarian cancer[J]. Mol Cancer, 2019, 18(1):124. doi: 10.1186/s12943-019-1049-4.
|
82 |
Houg DS, Bijlsma MF. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2018, 17(1):95. doi: 10.1186/s12943-018-0842-9.
|
83 |
Lee JW, Stone ML, Porrett PM, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver[J]. Nature, 2019, 567(7747):249-252.
|
84 |
Lee JW, Beatty GL. Inflammatory networks cultivate cancer cell metastasis to the liver[J]. Cell Cycle, 2020, 19(6):642-651.
|
85 |
Taverna S, Pucci M, Giallombardo M, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway[J]. Sci Rep, 2017, 7(1):3170. doi: 10.1038/s41598-017-03460-y.
|
86 |
Tiedemann K, Sadvakassova G, Mikolajewicz N, et al. Exosomal release of l-plastin by breast cancer cells facilitates metastatic bone osteolysis[J]. Transl Oncol, 2019, 12(3):462-474.
|
87 |
Ge X, Liu W, Zhao W, et al. Exosomal transfer of LCP1 promotes osteosarcoma cell tumorigenesis and metastasis by activating the JAK2/STAT3 signaling pathway[J]. Mol Ther Nucleic Acids, 2020, 21:900-915.
|
88 |
Chen J, Ren Q, Cai Y, et al. Mesenchymal stem cells drive paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells via paracrine of neuregulin 1[J]. Biochem Biophys Res Commun, 2018, 501(1):212-219.
|
89 |
林婷婷,任群,王水良.间充质干细胞在恶性肿瘤生物学中作用的研究进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2018, 8(1):39-48.
|
90 |
Welch DR, Hurst DR. Defining the hallmarks of metastasis[J]. Cancer Res, 2019, 79(12):3011-3027.
|
91 |
Hosseini H, Obradović MMS, Hoffmann M, et al. Early dissemination seeds metastasis in breast cancer[J]. Nature, 2016, 540(7634):552-558.
|
92 |
Harper KL, Sosa MS, Entenberg D, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer[J]. Nature, 2016, 540(7634):588-592.
|
93 |
Prunier C, Baker D, Dijke Ten, et al. TGF-β family signaling pathways in cellular dormancy[J]. Trends Cancer, 2019, 5(1):66-78.
|
94 |
Agarwal P, Isringhausen S, Li H, et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells[J]. Cell Stem Cell, 2019, 24(5):769-784.e6.
|
95 |
Montagner M, Bhome R, Hooper S, et al. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination[J]. Nat Cell Biol, 2020, 22(3):289-296.
|
96 |
Hen O, Barkan D. Dormant disseminated tumor cells and cancer stem/progenitor-like cells: Similarities and opportunities[J]. Semin Cancer Biol, 2020, 60:157-165.
|
97 |
Boire A, Coffelt SB, Quezada SA, et al. Tumour dormancy and reawakening: opportunities and challenges[J]. Trends Cancer, 2019, 5(12):762-765.
|
98 |
Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409):eaao4227. doi: 10.1126/science.aao4227.
|
99 |
Tiedemann K, Hussein O, Komarova SV. Role of altered metabolic microenvironment in osteolytic metastasis[J]. Front Cell Dev Biol, 2020, 8:435. doi: 10.3389/fcell.2020.00435.
|
100 |
Ganesh K, Massagué J. Targeting metastatic cancer[J]. Nat Med, 2021, 27(1):34-44
|
101 |
Steeg PS. Targeting metastasis[J]. Nat Rev Cancer, 2016, 16(4):201-218.
|
102 |
Petri BJ, Klinge CM. Regulation of breast cancer metastasis signaling by miRNAs[J]. Cancer Metastasis Rev, 2020, 39(3):837-886.
|
103 |
Pal I, Rajesh Y, Banik P, et al. Prevention of epithelial to mesenchymal transition in colorectal carcinoma by regulation of the E-cadherin-β-catenin-vinculin axis[J]. Cancer Lett, 2019, 452:254-263.
|
104 |
Halldorsson S, Rohatgi N, Magnusdottir M, et al. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition[J]. Cancer Lett, 2017, 396:117-129.
|
105 |
Wei Q, Qian Y, Yu J, et al. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications[J]. Oncogene, 2020, 39(39):6139-6156.
|
106 |
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors[J]. Trends Cancer, 2020, 6(11):942-950.
|
107 |
Kanwal M, Smahel M, Olsen M, et al. Aspartate β-hydroxylase as a target for cancer therapy[J]. J Exp Clin Cancer Res, 2020, 39(1):163. doi: 10.1186/s13046-020-01669-w.
|
108 |
Lin Q, Chen X, Meng F, et al. ASPH-notch Axis guided exosomal delivery of prometastatic secretome renders breast cancer multi-organ metastasis[J]. Mol Cancer, 2019, 18(1):156. doi: 10.1186/s12943-019-1077-0.
|
109 |
Green D, Eyre H, Singh A, et al. Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer[J]. Oncogene, 2020, 39(33):5553-5569.
|
110 |
Tagliatela AC, Hempstead SC, Hibshman PS, et al. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion[J]. Sci Rep, 2020, 10(1):11958. doi: 10.1038/s41598-020-67465-w.
|
111 |
Latifkar A, Ling L, Hingorani A, et al. Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity[J]. Dev Cell, 2019, 49(3):393-408.e7.
|
112 |
Yang F, Zhao Z, Sun B, et al. Nanotherapeutics for antimetastatic treatment[J]. Trends Cancer, 2020, 6(8):645-659.
|
113 |
Xie X, Nie H, Zhou Y, et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles[J]. Nat Commun, 2019, 10(1):5476. doi: 10.1038/s41467-019-13316-w.
|
114 |
Liu Y, Xie X, Hou X, et al. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis[J]. J Nanobiotechnology, 2020, 18(1):83. doi: 10.1186/s12951-020-00638-x.
|
115 |
Kaps L, Schuppan D. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers[J]. Cells, 2020, 9(9):2027. doi: 10.3390/cells9092027.
|
116 |
Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7):2053-2108.
|
117 |
Chen F, Zhong Z, Tan HY, et al. The significance of circulating tumor cells in patients with hepatocellular carcinoma: real-time monitoring and moving targets for cancer therapy[J]. Cancers (Basel), 2020, 12(7):1734. doi: 10.3390/cancers12071734.
|
118 |
Chiang CS, Kao YC, Webster TJ, et al. Circulating tumor-cell-targeting au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores[J]. J Mater Chem B, 2020, 8(25):5460-5471.
|
119 |
Tjan-Heijnen V, Viale G. The lymph node and the metastasis[J]. N Engl J Med, 2018, 378(21):2045-2046.
|
120 |
Pereira ER, Kedrin D, Seano G, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice[J]. Science, 2018, 359(6382):1403-1407.
|
121 |
Brown M, Assen FP, Leithner A, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice[J]. Science, 2018, 359(6382):1408-1411.
|
122 |
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020, 585(7823):113-118.
|
123 |
Grüner BM, Fendt SM. Cancer cells stock up in lymph vessels to survive[J]. Nature, 2020, 585(7823):36-37.
|
124 |
Gengenbacher N, Singhal M, Mogler C, et al. Timed Ang2-targeted therapy identifies the angiopoietin-tie pathway as key regulator of fatal lymphogenous metastasis[J]. Cancer Discov, 2021, 11(2):424-445.
|
125 |
Recasens A, Munoz L. Targeting cancer cell dormancy[J]. Trends Pharmacol Sci, 2019, 40(2):128-141.
|
126 |
Clara JA, Monge C, Yanng Y, et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update[J]. Nat Rev Clin Oncol, 2020, 7(4):204-232.
|
127 |
Ferrer AI, Trinidad JR, Sandiford O, et al. Epigenetic dynamics in cancer stem cell dormancy[J]. Cancer Metastasis Rev, 2020, 39(3):721-738.
|
128 |
Lu Z, Zou J, Li S, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches[J]. Nature, 2020, 579(7798):284-290.
|
129 |
Leslie PL, Chao YL, Tsai YH, et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes[J]. Nat Commun, 2019, 10(1):4192. doi: 10.1038/s41467-019-12222-5.
|
130 |
Wen YC, Lin YW, Chu CY, et al. Melatonin-triggered post-transcriptional and post-translational modifications of ADAMTS1 coordinately retard tumorigenesis and metastasis of renal cell carcinoma[J]. J Pineal Res, 2020, 69(2):e12668. doi: 10.1111/jpi.12668.
|
131 |
Montazeri K, Bellmunt J. Erdafitinib for the treatment of metastatic bladder cancer[J]. Expert Rev Clin Pharmacol, 2020, 13(1):1-6.
|
132 |
Loriot Y, Necchi A, Park SH, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma[J]. N Engl J Med, 2019, 381(4):338-348.
|
133 |
Zhang PF, Huang Y, Liang X, et al. Enhancement of the antitumor effect of HER2-directed CAR-T cells through blocking epithelial-mesenchymal transition in tumor cells[J]. FASEB J, 2020, 34(8):11185-11199.
|
134 |
Kim MY, Oskarsson T, Acharyya S, et al. Tumor self-seeding by circulating cancer cells[J]. Cell, 2009, 139(7):1315-1326.
|
135 |
Parkins KM, Dubois VP, Kelly JJ, et al. Engineering circulating tumor cells as novel cancer theranostics[J]. Theranostics, 2020, 10(17):7925-7937.
|
136 |
Fischer KR, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance[J]. Nature, 2015, 527(7579):472-476.
|
137 |
Bunz F. EMT and back again: visualizing the dynamic phenotypes of metastasis[J]. Cancer ResL, 2020, 80(2):153-155.
|
138 |
Lourenco AR, Ban Y, Crowley MJ, et al. Differential contributions of pre- and post-emt tumor cells in breast cancer metastasis[J]. Cancer Res, 2020, 80(2):163-169.
|
139 |
Ilina O, Gritsenko PG, Syga S, et al. Cell-cell adhesion and 3D matrixconfinement determine jamming transitions in breast cancer invasion[J]. Nat Cell Biol, 2020, 22(9):1103-1115.
|
140 |
Rosenbluth JM, Schackmann RCJ, Gray GK, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nat Commun, 2020, 11(1):1711. doi: 10.1038/s41467-020-15548-7.
|
141 |
Zahalka AH, Frenette PS. Nerves in cancer[J]. Nat Rev Cancer, 2020, 20(3):143-157.
|
142 |
Hadadi E, Taylor W, Li XM, et al. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice[J]. Nat Commun, 2020, 11(1):3193. doi: 10.1038/s41467-020-16890-6.
|