1 |
江滨,时宏珍,史央, 等. 自体脂肪干细胞移植治疗复杂性肛瘘的临床观察[J/CD]. 中华结直肠疾病电子杂志, 2019, 8(6):566-573.
|
2 |
Morizane A. [Cell therapy for Parkinson's disease with induced pluripotent stem cells][J]. Rinsho Shinkeigaku, 2019, 59(3):119-124.
|
3 |
El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis[J]. PLoS One, 2016,11(4):e151938.doi: 10.1371/journal.pone.0151938.
|
4 |
Chen IY, Greve JM, Gheysens O, et al. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation[J]. Mol Imaging Biol, 2009,11(3):178-187.
|
5 |
Danhier P, De Preter G, Magat J, et al. Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence[J]. Contrast Media Mol Imaging, 2014,9(2):143-153.
|
6 |
Puaux AL, Ong LC, Jin Y, et al. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals[J]. Int J Mol Imaging, 2011, 2011:321538.doi: 10.1155/2011/321538.
|
7 |
Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes[J]. J Biomed Opt, 2001, 6(4):432-440.
|
8 |
Gangadaran P, Li XJ, Lee HW, et al. A new bioluminescent reporter system to study the biodistribution of systematically injected tumor-derived bioluminescent extracellular vesicles in mice[J]. Oncotarget, 2017, 8(66):109894-109914.
|
9 |
Yan Y, Shi P, Song W, et al. Chemiluminescence and bioluminescence imaging for biosensing and therapy: in vitro and in vivo perspectives[J]. Theranostics, 2019, 9(14):4047-4065.
|
10 |
Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma[J]. Theranostics, 2017,7(10):2732-2745.
|
11 |
Petkov S, Starodubova E, Latanova A, et al. DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response[J]. PLoS One, 2018,13(6):e197902.doi: 10.1371/journal.pone.0197902.
|
12 |
Desai M, Di R, Fan H. Application of biolayer interferometry (BLI) for studying protein-protein interactions in transcription[J]. J Vis Exp, 2019(149):e59687. doi: 10.3791/59687.
|
13 |
Sultan MT, Choi BY, Ajiteru O, et al. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septalapproach[J]. Biomaterials, 2021, 266:120413.doi: 10.1016/j.biomaterials.2020.120413.
|
14 |
Sheyn D, Cohn-Yakubovich D, Ben-David S, et al. Bone-chip system to monitor osteogenic differentiation using optical imaging[J]. MicrofluidNanofluidics, 2019, 23(8):99. doi: 10.1007/s10404-019-2261-7.
|
15 |
Chen G, Lin S, Huang D, et al. Revealing the Fate of transplanted stem cells in vivo with a novel optical imaging strategy[J]. Small, 2018,14(3).doi: 10.1002/smll.201702679.
|
16 |
Cao J, Li X, Chang N, et al. Dual-modular molecular imaging to trace transplanted bone mesenchymal stromal cells in an acute myocardial infarction model[J]. Cytotherapy, 2015,17(10):1365-1373.
|
17 |
Daadi MM, Li Z, Arac A, et al. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain[J]. MolTher, 2009,17(7):1282-1291.
|
18 |
Oh HJ, Hwang DW, Youn H, et al. In vivo bioluminescence reporter gene imaging for the activation of neuronal differentiation induced by the neuronal activator neurogenin 1 (Ngn1) in neuronal precursor cells[J]. Eur J Nucl Med Mol Imaging, 2013, 40(10):1607-1617.
|
19 |
Kern I, Xu R, Julien S, et al. Embryonic stem cell-based screen for small molecules: cluster analysis reveals four response patterns in developing neural cells[J]. Curr Med Chem, 2013, 20(5):710-723.
|
20 |
Xu R, Feyeux M, Julien S, et al. Screening of bioactive peptides using an embryonic stem cell-based neurodifferentiation assay[J]. AAPS J, 2014, 16(3):400-412.
|
21 |
Lee ES, Kim TS, Kim SK. Current status of optical imaging for evaluating lymph nodes and lymphatic system[J]. Korean J Radiol, 2015, 16(1):21-31.
|
22 |
Alam MK, El-Sayed A, Barreto K, et al. Site-specific fluorescent labeling of antibodies and diabodies using SpyTag/SpyCatcher system for in vivo optical imaging[J]. Mol Imaging Biol, 2019, 21(1):54-66.
|
23 |
Kalinina MA, Skvortsov DA, Rubtsova MP, et al. Cytotoxicity test based on human cells labeled with fluorescent proteins: fluorimetry, photography, and scanning for high-throughput assay[J]. Mol Imaging Biol, 2018, 20(3):368-377.
|
24 |
Carr JA, Franke D, Caram JR, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proc Natl Acad Sci U S A, 2018, 115(17):4465-4470.
|
25 |
Lin KM, Hsu CH, Chang WS, et al. Human breast tumor cells express multimodal imaging reporter genes[J]. Mol Imaging Biol, 2008, 10(5):253-263.
|
26 |
Mostafavi H, Ghassemifard L, Rostami A, et al. Trabecular meshwork mesenchymal stem cell transplantation improve motor symptoms ofparkinsonian rat model[J]. Biologicals, 2019, 61:61-67.
|
27 |
Gubin AN, Reddy B, Njoroge JM, et al. Long-term, stable expression of green fluorescent protein in mammalian cells[J]. Biochem Biophys Res Commun, 1997, 236(2):347-350.
|
28 |
Persons DA, Allay JA, Allay ER, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo[J]. Blood, 1997, 90(5):1777-1786.
|
29 |
余璞,龙海,霍金龙, 等. 体外传代对版纳微型猪骨髓间充质干细胞绿色荧光蛋白表达的影响[J/CD]. 中华细胞与干细胞杂志(电子版), 2016, 6(6):363-368.
|
30 |
Zhan Y, Wang Y, Wei L, et al. Differentiation of hematopoietic stem cells into hepatocytes in liver fibrosis in rats[J]. Transplant Proc, 2006, 38(9):3082-3085.
|
31 |
杨青,秦书俭,包翠芬, 等. 两种示踪方式的骨髓间充质干细胞在促进肝缺血再灌注损伤修复中的对比研究[J]. 中国临床解剖学杂志, 2016, 34(3):312-317.
|
32 |
Li K, Chan CT, Nejadnik H, et al. Ferumoxytol-based Dual-modality imaging probe for detection of stem cell transplant rejection[J]. Nanotheranostics, 2018, 2(4):306-319.
|
33 |
Grady ST, Britton L, Hinrichs K, et al. Persistence of fluorescent nanoparticle-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection[J]. J Tissue EngRegen Med, 2019,13(2):191-202.
|
34 |
Ntziachristos V, Ripoll J, Weissleder R. Would near-infrared fluorescence signals propagate through large human organs for clinical studies?[J]. Opt Lett, 2002, 27(5):333-335.
|
35 |
Xu R, Bai Y, Min S, et al. In vivo monitoring and assessment of exogenous mesenchymal stem cell-derived exosomes in mice with ischemic stroke by molecular imaging[J]. Int J Nanomedicine, 2020, 15:9011-9023.
|
36 |
Chen D, Li Q, Meng Z, et al. Bright polymer dots tracking stem cell engraftment and migration to injured mouse liver[J]. Theranostics, 2017, 7(7):1820-1834.
|
37 |
Dehua H, Suying L, Qianwu W, et al. An NIR-II fluorescence/Dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells[J]. Advanced Functional Materials, 2019, 29(2):1806546.doi: org/10.1002/adfm.201806546.
|
38 |
Pandey S, Bodas D. High-quality quantum dots for multiplexed bioimaging: A critical review[J]. Adv Colloid Interface Sci, 2020, 278:102137.doi: 10.1016/j.cis.2020.102137.
|
39 |
Valluru KS, Willmann JK. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 2016, 35(4):267-280.
|
40 |
Kim T, Lemaster JE, Chen F, et al. Photoacoustic imaging of human mesenchymal stem cells labeled with prussian blue-poly(l-lysine) nanocomplexes[J]. ACS Nano, 2017, 11(9):9022-9032.
|
41 |
Cai W, Sun J, Sun Y, et al. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure[J]. Biomater Sci, 2020,8(23):6592-6602.
|
42 |
Kubelick KP, Emelianov S Y. In vivo photoacoustic guidance of stem cell injection and delivery for regenerative spinal cord therapies[J]. Neurophotonics, 2020, 7(3):30501.doi: 10.1117/1.NPh.7.3.030501.
|
43 |
Yao M, Shi X, Zuo C, et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia[J]. ACS Appl Mater Interfaces, 2020, 12(34):37885-37895.
|
44 |
Li W, Chen R, Lv J, et al. In vivo photoacoustic imaging of brain injury and rehabilitation by high-efficient near-infrared dye labeled mesenchymal stem cells with enhanced brain barrier permeability[J]. AdvSci (Weinh), 2017, 5(2):1700277.doi: 10.1002/advs.201700277.
|
45 |
Xu C, Feng Q, Yang H, et al. A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer[J]. AdvSci (Weinh), 2018,5(10):1800382.doi: 10.1002/advs.201800382.
|
46 |
Qin X, Chen H, Yang H, et al. Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles[J]. Adv Funct Mater, 2018, 28(1):1704939. doi: 10.1002/adfm.201704939.
|
47 |
Dhada KS, Hernandez DS, Suggs L J. In vivo photoacoustic tracking of mesenchymal stem cell viability[J]. ACS Nano, 2019,13(7):7791-7799.
|
48 |
Kubelick KP, Snider EJ, Ethier CR, et al. Development of a stem cell tracking platform for ophthalmic applications using ultrasound and photoacoustic imaging[J]. Theranostics, 2019, 9(13):3812-3824.
|
49 |
Yang C. Molecular contrast optical coherence tomography: a review[J]. Photochem Photobiol, 2005, 81(2):215-237.
|
50 |
Yaqoob Z, McDowell E, Wu J, et al. Molecular contrast optical coherence tomography: A pump-probe scheme using indocyanine green as a contrast agent[J]. J Biomed Opt, 2006,11(5):54017.doi: 10.1117/1.2360525.
|
51 |
Rey S M, Povazay B, Hofer B, et al. Three-and four-dimensional visualization of cell migration using optical coherence tomography[J]. J Biophotonics, 2009,2(6-7):370-379.
|
52 |
Li X, Zhang W, Wang WY, et al. Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers[J]. Biomed Opt Express, 2020,11(7):3659-3672.
|
53 |
Altschwager P, Ambrosio L, Swanson EA, et al. Juvenile macular degenerations[J]. Semin Pediatr Neurol, 2017, 24(2):104-109.
|
54 |
Banayan N, Georgeon C, Grieve K, et al. Spectral-domain optical coherence tomography in limbal stem cell deficiency. A case-control Study[J]. Am J Ophthalmol, 2018, 190:179-190.
|
55 |
Binotti WW, Nose RM, Koseoglu ND, et al. The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency[J]. Ocul Surf, 2021, 19:94-103.
|
56 |
Gurjarpadhye AA, DeWitt MR, Xu Y, et al. Dynamic assessment of the endothelialization of tissue-engineered blood vessels using an optical coherence tomography catheter-based fluorescence imaging system[J]. Tissue Eng Part C Methods, 2015, 21(7):758-766.
|
57 |
Wilson BC, Vitkin IA, Matthews DL. The potential of biophotonic techniques in stem cell tracking and monitoring of tissue regeneration applied to cardiac stem cell therapy[J]. J Biophotonics, 2009, 2(11):669-681.
|