1 |
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes[J]. Lancet, 2018, 391(10138):2449-2462.
|
2 |
Bretzel RG, Eckhard M, Brendel MD. Pancreatic islet and stem cell transplantation: new strategies in cell therapy of diabetes mellitus[J]. Panminerva Med, 2004, 46(1):25-42.
|
3 |
Dadheech N, James Shapiro AM. Human induced pluripotent stem cells in the curative treatment of diabetes and potential impediments ahead[J]. Adv Exp Med Biol, 2019, 1144:25-35.
|
4 |
Wu Q, Zheng S, Qin Y, et al. Efficacy and safety of stem cells transplantation in patients with type 1 diabetes mellitus-a systematic review and meta-analysis[J]. Endocr J, 2020, 67(8):827-840.
|
5 |
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125.
|
6 |
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
|
7 |
McCracken KW, Aihara E, Martin B, et al. Wnt/beta-catenin promotes gastric fundus specification in mice and humans[J]. Nature, 2017, 541(7636):182-187.
|
8 |
Uchida H, Machida M, Miura T, et al. A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells[J]. JCI insight, 2017, 2(1):e86492.
|
9 |
Foster J W, Wahlin K, Adams SM, et al. Cornea organoids from human induced pluripotent stem cells[J]. Sci Rep, 2017, 7:41286.
|
10 |
Chen YW, Huang SX, de Carvalho A, et al. A three-dimensional model of human lung development and disease from pluripotent stem cells[J]. Nat Cell Biol, 2017, 19(5):542-549.
|
11 |
Crespo M, Vilar E, Tsai SY, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing[J]. Nat Med, 2017, 23(7):878-884.
|
12 |
Kim Y, Kim H, Ko UH, et al. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo[J]. Sci Rep, 2016, 6:35145.
|
13 |
Mandarim-de-Lacerda CA. Pancreatic islet (of Langerhans) revisited[J]. Histol Histopathol, 2019, 34(9):985-993.
|
14 |
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology[J]. Cold Spring Harb Perspect Biol, 2012, 4(6):a012401.
|
15 |
Takahashi Y, Takebe T, Taniguchi H. Methods for generating vascularized islet-like organoids via self-condensation[J]. Curr Protoc Stem Cell Biol, 2018, 45(1):e49.
|
16 |
Loomans CJM, Williams Giuliani N, Balak J, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential[J]. Stem Cell Reports, 2018, 10(3):712-724.
|
17 |
Jiang K, Chaimov D, Patel SN, et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture[J]. Biomaterials, 2019, 198:37-48.
|
18 |
Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes[J]. Nat Commun, 2019, 10(1):4491.
|
19 |
Wang D, Wang J, Bai L, et al. Long-term expansion of pancreatic islet organoids from resident procr(+) progenitors[J]. Cell, 2020, 180(6):1198-1211.e19.
|
20 |
Elizondo DM, Brandy NZD, da Silva RLL, et al. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes[J]. Sci Rep, 2020, 10(1):4362.
|
21 |
D'Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401.
|
22 |
Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438.
|
23 |
Shim JH, Kim J, Han J, et al. Pancreatic islet-like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice[J]. Cell Transplant, 2015, 24(10):2155-2168.
|
24 |
Wang W, Jin S, Ye K. Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds[J]. Stem Cells Dev, 2017, 26(6):394-404.
|
25 |
Candiello J, Grandhi TSP, Goh SK, et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform[J]. Biomaterials, 2018, 177:27-39.
|
26 |
Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells[J]. Biomaterials, 2020, 233:119673.
|
27 |
Yoshihara E, O’Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830):606-611.
|
28 |
Wang H, Liu H, Zhang X, et al. One-step generation of aqueous-droplet-filled hydrogel fibers as organoid carriers using an all-in-water microfluidic system[J]. ACS Appl Mater Interfaces, 2021, 13(2):3199-3208.
|
29 |
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling[J]. Drug Discov Today, 2016, 21(9):1399-1411.
|
30 |
Tao T, Wang Y, Chen W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform[J]. Lab Chip, 2019, 19(6):948-958.
|
31 |
Lebreton F, Wassmer CH, Belofatto K, et al. [Insulin-secreting organoids: a first step towards the bioartificial pancreas][J]. Med Sci (Paris), 2020, 36(10):879-885.
|