1 |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28.
|
2 |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J lin, 2016, 66(1):7-30.
|
3 |
Ettinger DS, Wood D, Akerley W, et al. NCCN guidelines insights: non-small cell lung cancer, version 4.2016[J]. J Natl Compr Canc Netw, 2016, 14(3):255-264.
|
4 |
Dreyer J, Bremer M, Henkenberens C. Comorbidity indexing for prediction of the clinical outcome after stereotactic body radiation therapy in non-small cell lung cancer[J]. Radiat Oncol, 2018, 13(1):1-8.
|
5 |
Brooks ED, Verma V, Senan S, et al. Salvage Therapy for Locoregional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage NSCLC[J]. J Thorac Oncol, 2020, 15(2):176-189.
|
6 |
Moharil RB, Dive A, Khandekar S, et al. Cancer stem cells: An insight[J]. J Oral Maxillofac Pathol, 2017, 21(3):463-469.
|
7 |
Rabata A, Hampl A, Koledova Z. Lungosphere assay: 3D culture of lung epithelial stem/progenitor cells[J]. Methods Mol Biol, 2017, 1612:149-165.
|
8 |
Savage P. Chemotherapy curable malignancies and cancer stem cells:a biological review and hypothesis[J]. BMC Cancer, 2016, 16(1): 906.
|
9 |
Masciale V, Grisendi G, Banchelli F, et al. Isolation and identification of cancer stem-like cells in adenocarcinoma and squamous cell carcinoma of the lung: a pilot study[J]. Front Oncol, 2019, 9:1394-1406.
|
10 |
Wang Y, Jiang M, Du C, et al. Utilization of lung cancer cell lines for the study of lung cancer stem cells (Review)[J]. Oncol Lett, 2018, 15(5):6791-6798.
|
11 |
Liu X, Wei H, Liu Y, et al. Construction of high sensitive CD133 immune plga magnetic spheres platform for lung cancer stem cells isolation and its property evaluation[J]. J Biomed Nanotechnol, 2018, 14(6):1066-1074.
|
12 |
郑少秋, 李书华, 王红艳, 等. CD133阳性/阴性肺癌细胞的分类、鉴定及差异基因的筛选[J]. 中国肺癌杂志, 2015, 18(3):123-131.
|
13 |
Xie T, Mo L, Li L, et al. Identification of side population cells in human lung adenocarcinoma A549 cell line and elucidation of the underlying roles in lung cancer[J]. Oncol Lett, 2018, 15(4):4900-4906.
|
14 |
Bagheri V, Memar B, Behzadi R, et al. Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer[J]. J Cell Physiol, 2018, 233(10):7036-7046.
|
15 |
Roy S, Lu K, Nayak MK, et al. Activation of D2 dopamine receptors in CD133+ve cancer stem cells in non-small cell lung carcinoma inhibits proliferation, clonogenic ability, and invasiveness of these cells[J]. J Biol Chem, 2017, 292(2):435-445.
|
16 |
Roudi R, Korourian A, Shariftabrizi A, et al. Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes[J]. Cancer Invest, 2015, 33(7):294-302.
|
17 |
Alama A, Gangemi R, Ferrini S, et al. CD133-positive cells from non-small cell lung cancer show distinct sensitivity to cisplatin and afatinib[J]. Arch Immunol Ther Exp, 2015, 63(3):207-214.
|
18 |
Dan W, Wen GM, Wei H, et al. The roles of CD133 expression in the patients with non-small cell lung cancer[J]. Cancer Biomarkers, 2018, 22(3):385-394.
|
19 |
Chen E, Zeng Z, Bai B, et al. The prognostic value of CSCs biomarker CD133 in NSCLC: a meta-analysis[J]. Oncotarget, 2016, 7(35):56526-56539.
|
20 |
Dinavahi SS, Bazewicz CG, Gowda R, et al. Aldehyde Dehydrogenase Inhibitors for Cancer Therapeutics[J]. Trends Pharmacol Sci, 2019, 40(10):774-789.
|
21 |
Tian S, Xing Y, Xia P. The prognostic roles of circulating ALDH1+ tumor cell in the patients with non-small cell lung cancer[J]. Biosci Rep, 2018, 38(5):1-7.
|
22 |
Lei H, Zhang K, Wang CH, et al. Aldehyde dehydrogenase 1A1 confers erlotinib resistance via facilitating the reactive oxygen species-reactive carbonyl species metabolic pathway in lung adenocarcinomas[J]. Theranostics, 2019, 9(24):7122-7139.
|
23 |
Yun X, Zhang K, Wang J, et al. Targeting USP22 suppresses tumorigenicity and enhances cisplatin sensitivity through ALDH1A3 downregulation in cancer-initiating cells from lung adenocarcinoma[J]. Mol Cancer Res, 2018, 16(7):1161-1171.
|
24 |
Victor, Heurtier, Nick, et al. The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells[J]. Nat Commun, 2019, 10(1):1109-1124.
|
25 |
Lee S-H, Chen T-Y, Dhar SS, et al. A feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness[J]. Nucleic Acids Res, 2016, 44(22):10603-10618.
|
26 |
Yun HS, Baek J-H, Yim J-H, et al. Radiotherapy diagnostic biomarkers in radioresistant human H460 lung cancer stem-like cells[J]. Cancer Biol Ther, 2016, 17(2):208-218.
|
27 |
Suresh R, Ali S, Ahmad A, et al. The role of cancer stem cells in recurrent and drug-resistant lung cancer[J]. Adv Exp Med Biol, 2015, 890(3):57-74.
|
28 |
Ye T, Li J, Sun Z, et al. Nr5a2 promotes cancer stem cell properties and tumorigenesis in nonsmall cell lung cancer by regulating Nanog[J]. Cancer Med, 2019, 8(3):1232-1245.
|
29 |
Hu F, Li C, Zheng X, et al. Lung adenocarcinoma resistance to therapy with EGFRtyrosine kinase inhibitors is related to increased expression of cancer stem cell markers SOX2, OCT4 and NANOG[J]. Oncol Rep, 2019, 43(2):727-735.
|
30 |
Macdonagh L, Gray SG, Breen EP, et al. Lung cancer stem cells: The root of resistance[J]. Cancer Lett, 2016, 372(2):147-156.
|
31 |
Dai Y, Liu S, Zhang W-Q, et al. YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells[J]. Oncotarget, 2017, 8(3):4096-4109.
|
32 |
Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer[J]. Redox Biol, 2019, 25:101084-101093.
|
33 |
Morgan MA, Lawrence TS. Molecular pathways: Overcoming radiation resistance by targeting dna damage response pathways[J]. Clin Cancer Res, 2015, 21(13):2898-2904.
|
34 |
Philchenkov A. Radiation-induced cell death: signaling and pharmacological modulation[J]. Crit Rev Oncog, 2018, 23(1-2):13-37.
|
35 |
Jiang W, Jin G, Cai F, et al. Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response[J]. Exp Mol Med, 2019, 51(2):1-20.
|
36 |
Chen X, Qian D, Cheng J, et al. High expression of Rad51c predicts poor prognostic outcome and induces cell resistance to cisplatin and radiation in non-small cell lung cancer[J]. Tumour Biol, 2016, 37(10):13489-13498.
|
37 |
Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells[J]. Radiother Oncol, 2014, 110(3):538-545.
|
38 |
Chen Y, Zhang F, Tsai Y, et al. IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation[J]. Radiat Oncol, 2015, 10(1):227-227.
|
39 |
Barker HE, Patel R, Mclaughlin M, et al. CHK1 inhibition radiosensitises head and neck cancers to paclitaxel-based chemoradiotherapy[J]. Mol Cancer Ther, 2016, 15(9):2042-2054.
|
40 |
Fernandez HR, Gadre SM, Tan M, et al. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer[J]. Cell Death Differ, 2018, 25(7):1239-1258.
|
41 |
Li J, Jiang E, Wang X, et al. Dormant cells: the original cause of tumor recurrence and metastasis[J]. Cell Biochem Biophys, 2015, 72(2):317-320.
|
42 |
Endo H, Okami J, Okuyama H, et al. The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations[J]. Oncogene, 2017, 36(20):2824-2834.
|
43 |
Bridges KA, Chen X, Liu H, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells[J]. Oncotarget, 2016, 7(44):71660-71672.
|
44 |
Skvortsova I, Debbage P, Kumar V, et al. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling[J]. Semin Cancer Biol, 2015, 35:39-44.
|
45 |
Zhu L, Xue F, Xu X, et al. MicroRNA-198 inhibition of HGF/c-MET signaling pathway overcomes resistance to radiotherapy and induces apoptosis in human non-small-cell lung cancer[J]. J Cell Biochem, 2018, 119(9):7873-7886.
|
46 |
Chen P, Huang H, Wang Y, et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death[J]. J Exp Clin Cancer Res, 2019, 38(1):254-271.
|
47 |
Liu G, Fen P, Fengqing Y, et al. Role of autophagy and apoptosis in non-small-cell lung cancer[J]. Int J Mol Sci, 2017, 18(2):367-391.
|
48 |
Saleh T, Cuttino L W, Gewirtz D A, et al. Autophagy is not uniformly cytoprotective: a personalized medicine approach for autophagy inhibition as a therapeutic strategy in non-small cell lung cancer[J]. Biochim Biophys Acta, 2016, 1860(10):2130-2136.
|
49 |
Liu Z, Huang S. Inhibition of miR-191 contributes to radiation-resistance of two lung cancer cell lines by altering autophagy activity[J]. Cancer Cell Int, 2015, 15(1):16.
|
50 |
Cechakova L, Ondrej M, Pavlik V, et al. A potent autophagy inhibitor (Lys05) enhances the impact of ionizing radiation on human lung cancer cells H1299[J]. Int J Mol Sci, 2019, 20(23):5881-5897.
|
51 |
Wen J, Liu H, Wang L, et al. Potentially Functional variants of ATG16L2 predict radiation pneumonitis and outcomes in patients with non-small cell lung cancer after definitive radiotherapy[J]. J Thorac Oncol, 2018, 13(5):660-675.
|
52 |
Chen N, Wu L, Yuan H, et al. ROS/Autophagy/Nrf2 pathway mediated Low-Dose radiation induced radio-resistance in human lung adenocarcinoma A549 cell[J]. Int J Biol Sci, 2015, 11(7): 833-844.
|
53 |
Elming P, Sørensen B, Oei A, et al. Hyperthermia: the optimal treatment to overcome radiation resistant hypoxia[J]. Cancers, 2019, 11(1):60-80.
|
54 |
Chatterjee S, Sil PC. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy[J]. Pharmacol Res, 2019, 142:251-261.
|
55 |
Schoning J, Monteiro M J, Gu W, et al. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α[J]. Clin Exp Pharmacol Physiol, 2017, 44(2):153-161.
|
56 |
Christophe D, Vanessa D, Jorrit DW, et al. Hypoxia-induced cisplatin resistance in non-small cell lung cancer cells is mediated by HIF-1α and mutant p53 and can be overcome by induction of oxidative stress[J]. Cancers, 2018, 10(4):126-141.
|
57 |
Jiang ZF, Wang M, Xu JL, et al. Hypoxia promotes mitochondrial glutamine metabolism through HIF1α-GDH pathway in human lung cancer cells[J]. Biochem Biophys Res Commun, 2017, 483(1):32-38.
|
58 |
He J, Hu Y, Hu M, et al. The relationship between the preoperative plasma level of HIF-1α and clinic pathological features, prognosis in non-small cell lung cancer[J]. Sci Rep, 2016, 6(1):20586-20598.
|
59 |
Peng J, Wang X, Ran L, et al. Hypoxia-inducible factor 1α regulates the transforming growth factor β1/SMAD family member 3 pathway to promote breast cancer progression[J]. J Breast Cancer, 2018, 21(3):259-266.
|
60 |
Berezowska S, Galván JA, Langer R, et al. Glycine decarboxylase and HIF-1α expression are negative prognostic factors in primary resected early-stage non-small cell lung cancer[J]. Virchows Archiv, 2017, 470(3):323-330.
|
61 |
Gao X, Wang G, Zhao W, et al. Blocking OLFM4/HIF-1α axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer[J]. J Cell Physiol, 2019, 234(9):15035-15043.
|
62 |
Yu Y, Wang Y, Wang Y, et al. Antiangiogenic therapy using endostatin increases the number of ALDH+ lung cancer stem cells by generating intratumor hypoxia[J]. Sci Rep, 2016, 6(1): 34239.
|