1 |
Grassivaro F, Menon R, Acquaviva M, et al. Convergence between microglia and peripheral macrophages phenotype during development and neuroinflammation[J]. J Neurosci, 2020, 40(4): 784-795.
|
2 |
Gogoleva VS, Drutskaya MS, Atretkhany KS. [The role of microglia in the homeostasis of the central nervous system and neuroinflammation][J]. Mol Biol (Mosk), 2019, 53(5): 790-798.
|
3 |
Tong CK, Vidyadaran S. Role of microglia in embryonic neurogenesis[J]. Exp Biol Med (Maywood), 2016, 241(15): 1669-1675.
|
4 |
Bennett ML, Bennett FC. The influence of environment and origin on brain resident macrophages and implications for therapy[J]. Nat Neurosci, 2020, 23(2): 157-166.
|
5 |
Streit WJ, Xue QS. Life and death of microglia[J]. J Neuroimmune Pharmacol, 2009, 4(4): 371-379.
|
6 |
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol, 2017, 35:441-468.
|
7 |
Orihuela R, Mcpherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4): 649-665.
|
8 |
Laffer B, Bauer D, Wasmuth S, et al. Loss of IL-10 promotes differentiation of microglia to a M1 phenotype[J]. Front Cell Neurosci, 2019, 13:430.
|
9 |
Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity[J]. Wiley Interdiscip Rev Dev Biol, 2016, 5(6): 640-658.
|
10 |
Lim DA, Alvarez-Buylla A. The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a018820.
|
11 |
Schlagal CR, Wu P. Tipsy neural stem cells: chronic effects of alcohol on the brain[J]. Neural Regen Res, 2019, 14(1):67-68.
|
12 |
Andreotti JP, Silva WN, Costa AC, et al. Neural stem cell niche heterogeneity[J]. Semin Cell Dev Biol, 2019, 95:42-53.
|
13 |
Tchieu J, Calder EL, Guttikonda SR, et al. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells[J]. Nat Biotechnol, 2019, 37(3): 267-275.
|
14 |
Sueda R, Imayoshi I, Harima Y, et al. High Hes1 expression and resultant ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain[J]. Gene Dev, 2019, 33(9-10): 511-523.
|
15 |
Manning CS, Biga V, Boyd J, et al. Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis[J]. Nat Commun, 2019, 10(1): 2835.
|
16 |
Zhao X, Li J, Sun H. CD200-CD200R interaction: an important regulator after stroke[J]. Front Neurosci, 2019, 13: 840.
|
17 |
Ahn JH, Kim DW, Park JH, et al. Expression changes of CX3CL1 and CX3CR1 proteins in the hippocampal CA1 field of the gerbil following transient global cerebral ischemia[J]. Int J Mol Med, 2019, 44(3): 939-948.
|
18 |
Vay SU, Flitsch LJ, Rabenstein M, et al. The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo[J]. J Neuroinflamm, 2018, 15(1): 226.
|
19 |
Gu F, Wang J, Fu L, et al. Co-culture with microglia promotes neural stem cells differentiation into astrocytes[J]. Chin Med J (Engl), 2011, 124(20): 3394-3398.
|
20 |
Osman AM, Rodhe J, Shen X, et al. The secretome of microglia regulate neural stem cell function[J]. Neuroscience, 2019, 405:92-102.
|
21 |
Costa C, Eixarch H, Martínez-Sáez E, et al. Expression of bone morphogenetic proteins in multiple sclerosis lesions[J]. Am J Pathol, 2019, 189(3): 665-676.
|
22 |
Chen J, Van Gulden S, Mcguire TL, et al. BMP-responsive protease HtrA1 is differentially expressed in astrocytes and regulates astrocytic development and injury response[J]. J Neurosci, 2018, 38(15): 3840-3857.
|
23 |
Hu JG, Zhang YX, Qi Q, et al. Expression of BMP-2 and BMP-4 proteins by type-1 and type-2 astrocytes induced from neural stem cells under different differentiation conditions[J]. Acta Neurobiol Exp (Wars), 2012, 72(1): 95-101.
|
24 |
Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development[J]. Cell Res, 1999, 9(3): 179-188.
|
25 |
Wu X, Zhao X, Miao X. MicroRNA-374b promotes the proliferation and differentiation of neural stem cells through targeting Hes1[J]. Biochem Biophys Res Commun, 2018, 503(2): 593-599.
|
26 |
Seth KA, Majzoub JA. Repressor element silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) can act as an enhancer as well as a repressor of corticotropin-releasing hormone gene transcription[J]. J Biol Chem, 2001, 276(17): 13917-13923.
|
27 |
Jiang Z, Song Q, Tang M, et al. Enhanced migration of neural stem cells by microglia grown on a three-dimensional graphene scaffold[J]. Acs Appl Mater Interfaces, 2016, 8(38): 25069-25077.
|
28 |
Arimitsu N, Shimizu J, Fujiwara N, et al. Role of SDF1/CXCR4 interaction in experimental hemiplegic models with neural cell transplantation[J]. Int J Mol Sci, 2012, 13(3): 2636-2649.
|
29 |
Sahab Negah S, Khaksar Z, Aligholi H, et al. Enhancement of neural stem cell survival, proliferation, migration, and differentiation in a novel self-assembly peptide nanofibber scaffold[J]. Mol Neurobiol, 2017, 54(10): 8050-8062.
|
30 |
Gao M, Dong Q, Yao H, et al. Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling[J]. Brain Behav Immun, 2017, 59:288-299.
|
31 |
Carbajal KS, Schaumburg C, Strieter R, et al. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis[J]. Proc Natl Acad Sci U S A, 2010, 107(24): 11068-11073.
|
32 |
Matsui TK, Mori E. Microglia support neural stem cell maintenance and growth[J]. Biochem Biophys Res Commun, 2018, 503(3): 1880-1884.
|
33 |
Liao H, Huang W, Niu R, et al. Cross-talk between the epidermal growth factor-like repeats/fibronectin 6-8 repeats domains of Tenascin-R and microglia modulates neural stem/progenitor cell proliferation and differentiation[J]. J Neurosci Res, 2008, 86(1): 27-34.
|
34 |
Yuan J, Ge H, Liu W, et al. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway[J]. Oncotarget, 2017, 8(12): 19855-19865.
|
35 |
Katura T, Moriya T, Nakahata N. 15-Deoxy-delta 12,14-prostaglandin J2 biphasically regulates the proliferation of mouse hippocampal neural progenitor cells by modulating the redox state[J]. Mol Pharmacol, 2010, 77(4): 601-611.
|
36 |
Mecha M, Yanguas-Casás N, FELIú A, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis[J]. J Neuroinflammation, 2020, 17(1):88.
|
37 |
Terashima T, Nakae Y, Katagi M, et al. Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro[J]. Heliyon, 2018, 4(10):e00837.
|
38 |
Leker RR, Toth ZE, Shahar T, et al. Transforming growth factor alpha induces angiogenesis and neurogenesis following stroke[J]. Neuroscience, 2009, 163(1):233-243.
|
39 |
Choi JY, Kim JY, Kim JY, et al. M2 Phenotype microglia-derived cytokine stimulates proliferation and neuronal differentiation of endogenous stem cells in ischemic brain[J]. Exp Neurobiol, 2017, 26(1):33-41.
|
40 |
Deierborg T, Roybon L, Inacio AR, et al. Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes[J]. Neuroscience, 2010, 171(4):1386-1396.
|
41 |
Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study[J]. Lancet, 2016, 388(10046):787-796.
|
42 |
Chen L, Zhang G, Gu Y, et al. Meta-analysis and systematic review of neural stem cells therapy for experimental ischemia stroke in preclinical studies[J]. Sci Rep, 2016, 6:32291.
|
43 |
Qian Y, Chen XX, Wang W, et al.Transplantation of Nurr1-overexpressing neural stem cells and microglia for treating parkinsonian rats[J]. CNS Neurosci Ther, 2020, 26(1):55-65.
|
44 |
Elena C, Ekaterina S, Marina K, et al. Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases [J]. J Neurorestoratology, 2018, 6: 41-47.
|
45 |
Ekaterina Shevela MD, Natalia Starostina, Alexandra Yankovskaya, et al. Intranasal delivery of M2 macrophage-derived soluble products reduces neuropsychological deficit in patients with cerebrovascular disease: a pilot study[J]. J Neurorestoratology, 2019, 7(2):89-100.
|