[1] |
Krauss RM. Lipoprotein subfractions and cardiovascular disease risk[J]. Curr Opin Lipidol, 2010, 21(4):305-311.
|
[2] |
Tertov VV, Orekhov AN, Kacharava AG, et al. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis[J]. Exp Mol Pathol, 1990, 52(3):300-308.
|
[3] |
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10):709-721.
|
[4] |
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis[J]. Nat Rev Immunol, 2014, 14(6):392-404.
|
[5] |
Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells[J]. Cardiovasc Res, 2014, 103(4):438-451.
|
[6] |
Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis[J]. Circ Res, 2014, 114(11):1757-1771.
|
[7] |
Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation[J]. J Leukoc Biol, 2007, 81(3):584-592.
|
[8] |
Cros J, Cagnard N, Woollard K, et al. Human CD14 dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors[J]. Immunity, 2010, 33(3):375-386.
|
[9] |
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2007, 27(11):2292-2301.
|
[10] |
Combadi E, Ley K. Vascular adhesion molecules bined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice[J]. Circulation, 2008, 117(13):1649-1657.
|
[11] |
Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(10):1424-1432.
|
[12] |
Novoselov VV, Sazonova MA, Ivanova EA, et al. Study of the activated macrophage transcriptome[J]. Exp Mol Pathol, 2015, 99(3):575-580.
|
[13] |
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1):14-20.
|
[14] |
Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes[J]. Int J Cardiol, 2015, 184(1):436-445.
|
[15] |
Zizzo G, Hilliard BA, Monestier M, et al. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction[J]. J Immunol, 2012, 189(7):3508-3520.
|
[16] |
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13:453-461.
|
[17] |
Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic Switch of macrophages to an M2-like phenotype is Independent of interleukin-4 receptor alpha (IL-4Rα) signaling[J]. Inflammation, 2013, 36(4):921-931.
|
[18] |
Gleissner CA, Shaked I, Little KM, et al. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages[J]. J Immunol, 2010, 184(9):4810-4818.
|
[19] |
Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis[J]. Front Physiol, 2012, 3:1.
|
[20] |
Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
|
[21] |
Stchain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts[J]. Basic Res Cardiol, 2015, 110(4):34.
|
[22] |
Chinetti-Gbaguidi G, Baron M, Bouhlel MA, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways[J]. Circ Res, 2011, 108(8):985-995.
|
[23] |
Orekhov AN, Sobenin IA, Gavrilin MA, et al. Macrophages in immunopathology of atherosclerosis: a target for diagnostics and therapy[J]. Curr Pharm Des, 2015, 21(9):1172-1179.
|
[24] |
Boyle JJ, Harrington HA, Piper E, et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype[J]. Am J Pathol, 2009, 174(3):1097-1108.
|
[25] |
Boyle JJ, Johns M, Kampfer T, et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated Iron handling and foam cell protection[J]. Circ Res, 2012, 110(1):20-33.
|
[26] |
Orekhov AN, Nikiforov NG, Elizova NV, et al. Phenomenon of individual difference in human monocyte activation[J]. Exp Mol Pathol, 2015, 99(1):151-154.
|
[27] |
Natoli G, Monticelli S. Macrophage activation: glancing into diversity[J]. Immunity, 2014, 40(2):175-177.
|
[28] |
Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells[J]. Cell, 2013, 152(1/2):157-171.
|
[29] |
Orekhov AN, Zhelankin AV, Kolmychkova KI, et al. Susceptibility of monocytes to activation correlates with atherogenic mitochondrial DNA mutations[J]. Exp Mol Pathol, 2015, 99(3):672-676.
|
[30] |
Al-Sharea A, Lee MK, Moore XL, et al. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype[J]. Thromb Haemost, 2016, 115(4):762-772.
|
[31] |
Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer[J]. Nat Immunol, 2010, 11(2):155-161.
|
[32] |
Bae YS, Lee JH, Choi SH, et al. Macrophages generate reactive Oxygen species in response to minimally oxidized low-density lipoprotein[J]. Circ Res, 2009, 104(2):210-218.
|
[33] |
Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive Oxygen species-dependent NLRP3 inflammasome activation[J]. Biochem Biophys Res Commun, 2012, 425(2):121-126.
|
[34] |
Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2[J]. Circ Res, 2010, 107(6):737-746.
|
[35] |
Huang Z, Li W, Wang R, et al. 7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages[J]. Life Sci, 2010, 87(19/22):651-657.
|
[36] |
Huber J, Boechzelt H, Karten B, et al. Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway[J]. Arterioscler Thromb Vasc Biol, 2002, 22(4):581-586.
|
[37] |
Yakubenko VP, Bhattacharjee A, Pluskota E, et al. αMβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation[J]. Circ Res, 2011, 108(5):544-554.
|
[38] |
Boyanovsky BB, Li X, Shridas P, et al. Bioactive products generated by group V sPLA(2) hydrolysis of LDL activate macrophages to secrete pro-inflammatory cytokines[J]. Cytokine, 2010, 50(1):50-57.
|
[39] |
Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors[J]. Am J Physiol Endocrinol Metab, 2011, 300(1):E145-E154.
|
[40] |
Ishiyama J, Taguchi R, Yamamoto A, et al. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells[J]. Atherosclerosis, 2010, 209(1):118-124.
|
[41] |
Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages[J]. J Biol Chem, 2002, 277(51):49982-49988.
|
[42] |
Miller YI, Choi SH, Wiesner P, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity[J]. Circ Res, 2011, 108(2):235-248.
|
[43] |
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease[J]. Vasc Health Risk Manag, 2015, 11:525-532.
|
[44] |
Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles[J]. Curr Opin Lipidol, 2011, 22(5):386-393.
|