[1] |
Elabd C, Centeno CJ, Schultz JR, et al. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study[J]. J Transl Med, 2016, 14:253.
|
[2] |
Pereira CL, Gonçalves RM, Peroglio M, et al. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs[J]. Biomaterials, 2014, 35(28):8144-8153.
|
[3] |
Hayflick L. The limited in vitro lifetime of human diploid cell strains[J]. Exp Cell Res, 1965, 37:614-636.
|
[4] |
Oh J, Lee YD, Wagers AJ. Stem cell aging:mechanisms,regulators and therapeutic opportunities[J]. Nat Med, 2014, 20(8):870-880.
|
[5] |
Benameur L, Charif N, Li YE, et al. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells[J]. Biomed Mater Eng, 2015, 25(1):S41-S46.
|
[6] |
Trachana V, Petrakis S, Fotiadis Z, et al. Human mesenchymal stem cells with enhanced telomerase activity acquire resistance against oxidative stress-induced genomic damage[J]. Cytotherapy, 2017, pii: S1465-3249(17)30541-30548. [Epub ahead of print]
|
[7] |
Carrillo J, Calvete O, Pintado-Berninches L, et al. Mutations in XLF/NHEJ1/cernunnos gene results in downregulation of telomerase genes expression and telomere shortening[J]. Hum Mol Genet, 2017, 26(10):1900-1914.
|
[8] |
He L, Zheng Y, Wan Y, et al. A shorter telomere is the key factor in preventing cultured human mesenchymal stem cells from senescence escape[J]. Histochem Cell Biol, 2014, 142(3):257-267.
|
[9] |
Wang X, Zou X, Zhao J, et al. Site-specific characteristics of bone marrow mesenchymal stromal cells modify the effect of aging on the skeleton [J]. Rejuvenation Res, 2015, [Epub ahead of print]
|
[10] |
Zhao Q, Wang XY, Yu XX, et al. Expression of human telomerase reverse transcriptase mediates the senescence of mesenchymal stem cells through the PI3K/AKT signaling pathway[J]. Int J Mol Med, 2015, 36(3):857-864.
|
[11] |
Choo KB, Tai L, Hymavathee KS, et al. Oxidative stress-induced premature senescence in Wharton's jelly-derived mesenchymal stem cells[J]. Int J Med Sci, 2014, 11(11):1201-1207.
|
[12] |
Lee JH, Jung HK, Han YS, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells[J]. Mol Med Rep, 2016, 14(4):3777-3784.
|
[13] |
Jeong SG, Cho GW. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells[J]. Biochem Biophys Res Commun, 2015, 460(4):971-976.
|
[14] |
Stolzing A, Jones E, Mcgonagle D, et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies[J]. Mech Ageing Dev, 2008, 129(3):163-173.
|
[15] |
Lee JS, Lee MO, Moon BH, et al. Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-Mediated downregulation of intrinsic stress signaling pathways[J]. Stem Cells, 2009, 27(8):1963-1975.
|
[16] |
Ko E, Lee KY, Hwang DS. Human umbilical cord Blood-Derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress[J]. Stem Cells Dev, 2012, 21(11):1877-1886.
|
[17] |
Borodkina A, Shatrova A, Abushik PA, et al. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells[J]. Aging, 2014, 6(6):481-495.
|
[18] |
Zhou L, Chen X, Liu T, et al. Melatonin reverses H2O2-induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway[J]. J Pineal Res, 2015, 59(2):190-205.
|
[19] |
Larsen SA, Kassem M, Rattan SI. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells[J]. Chem Cent J, 2012, 6(1):18.
|
[20] |
Kitada M, Kume S, Takeda-Watanabe A, et al. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy[J]. Clin Sci (Lond), 2013, 124(3):153-164.
|
[21] |
Li Y, He X, Li Y, et al. Nicotinamide phosphoribosyltransferase(Nampt)affects the lineage fate determination of mesenchymal stem cells:a possible cause for reduced osteogenesis and increased adipogenesis in older individuals[J]. J Bone Miner Res, 2011, 26(11):2656-2664.
|
[22] |
Chen H, Liu X, Chen H, et al. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation [J]. Ageing Res Rev, 2014, 13:55-64.
|
[23] |
Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin[J]. EMBO Mol Med, 2013, 5(3):430-440.
|
[24] |
Kim YJ, Hwang SH, Lee SY, et al. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose[J]. Stem Cells Dev, 2012, 21(10):1749-1760.
|
[25] |
Wang XX, Ma SS, Meng N, et al. Resveratrol exerts Dosage-Dependent effects on the Self-Renewal and neural differentiation of hUC-MSCs[J]. Mol Cells, 2016, 39(5):418-425.
|
[26] |
Ma C, Pi CC, Yang YE, et al. Nampt expression decreases Age-Related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1[J]. PLoS One, 2017, 12(1):e0170930.
|
[27] |
Son MJ, Kwon Y, Son T, et al. Restoration of mitochondrial NAD(+)levels delays stem cell senescence and facilitates reprogramming of aged somatic cells[J]. Stem Cells, 2016, 34(12): 2840-2851.
|
[28] |
Wang XQ, Shao Y, Ma CY, et al. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress[J]. J Cell Mol Med, 2014, 18(11):2298-2310.
|
[29] |
Sun HL, Wu YR, Fu DJ, et al. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-kappa B signaling pathway[J]. Stem Cells, 2014, 32(7):1943-1955.
|
[30] |
Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cel, 2006, 124(2):315-329.
|
[31] |
Gertler AA, Cohen HY. SIRT6, a protein with many faces[J]. Biogerontology, 2013, 14(6):629-639.
|
[32] |
Lee N, Kim DK, Kim ES, et al. Comparative interactomes of SIRT6 and SIRT7:Implication of functional links to aging[J]. Proteomics, 2014, 14(13/14):1610-1622.
|
[33] |
Zhang B, Liu N, Gu B, et al. [Observing the effect of high glucose on proliferation of bone marrow stromal stem cells through Wnt/Β-catenin pathway][J]. Zhongguo yi xue ke xue yuan xue bao, 2014, 36(4):389-393.
|
[34] |
Lei LT, Chen JB, Zhao YL, et al. Resveratrol attenuates senescence of adipose-derived mesenchymal stem cells and restores their paracrine effects on promoting insulin secretion of INS-1 cells through Pim-1[J]. Eur Rev Med Pharmacol Sci, 2016, 20(6):1203-1213.
|
[35] |
孙超,王言,邢辉, 等. 葡萄糖及O-GlcNAc糖基化对人骨髓间充质干细胞增殖、凋亡、衰老的影响[J]. 中国脊柱脊髓杂志, 2016, 26(4):354-361.
|
[36] |
Clevers H, Nusse R. Wnt/β-Catenin signaling and disease[J]. Cell, 2012, 149(6):1192-1205.
|
[37] |
Zhang DY, Pan Y, Zhang C, et al. Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production[J]. Mol Cell Biochem, 2013, 374(1/2):13-20.
|
[38] |
Kajla S, Mondol AS, Nagasawa A, et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling[J]. FASEB Journal, 2012, 26(5):2049-2059.
|
[39] |
Gu Z, Tan W, Feng G, et al. Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway[J]. Mol Cell Biochem, 2014, 387(1/2):27-37.
|
[40] |
Zhang DY, Wang HJ, Tan YZ. Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 Pathway[J]. PLoS One, 2011, 6(6):e21397.
|
[41] |
Tichon A, Eitan E, Kurkalli BG, et al. Oxidative stress protection by novel telomerase activators in mesenchymal stem cells derived from healthy and diseased individuals[J]. Curr Mol Med, 2013, 13(6):1010-1022.
|
[42] |
Yahata T, Takanashi T, Muguruma Y, et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells[J]. Blood, 2011, 118(11):2941-2950.
|
[43] |
Alves H, Munoz-Najar U, De Wit J, et al. A Link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells[J]. J Cell Mol Med, 2010, 14(12):2729-2738.
|
[44] |
Minieri V, Saviozzi S, Gambarotta G, et al. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells[J]. J Cell Mol Med, 2015, 19(4):734-743.
|
[45] |
Yu QJ, Katlinskaya YV, Carbone CJ, et al. DNA-Damage-Induced type I interferon promotes senescence and inhibits stem cell function[J]. Cell Rep, 2015, 11(5):785-797.
|
[46] |
Shearier E, Xing Q, Qian ZC, et al. Physiologically low Oxygen enhances biomolecule production and stemness of mesenchymal stem cell spheroids[J]. Tissue Eng Part C Methods, 2016, 22(4):360-369.
|
[47] |
Fehrer C, Brunauer R, Laschober GA, et al. Reduced Oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan[J]. Aging Cell, 2007, 6(6):745-757.
|
[48] |
Kanehira M, Kikuchi T, Ohkouchi SA, et al. Targeting lysophosphatidic acid signaling retards Culture-Associated senescence of human marrow stromal cells[J]. PLoS One, 2012, 7(2):e32185.
|
[49] |
Jung JW, Lee S, Seo MS, et al. Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3[J]. Cellular and Molecular Life Sciences, 2010, 67(7):1165-1176.
|
[50] |
郑晨曦,隋秉东,胡成虎, 等. 维生素C增强衰老个体来源的骨髓间充质干细胞的增殖能力[J]. 南方医科大学学报, 2015, 35(12):1689-1693.
|
[51] |
Gharibi B, Hughes FJ. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells[J]. Stem Cells Transl Med, 2012, 1(11):771-782.
|
[52] |
Mohammadi S, Nikbakht M, Malek MA, et al. Human platelet lysate as a Xeno free alternative of fetal bovine serum for the in vitro expansion of human mesenchymal stromal cells[J]. Int J Hematol Oncol Stem Cell Res, 2016, 10(3):161-171.
|
[53] |
詹菲,徐志伟,黄进, 等. 左归丸对衰老大鼠骨髓间充质干细胞增殖的影响[J]. 中华中医药杂志, 2015, 30(7):2518-2521.
|
[54] |
Sabapathy V, Kumar S. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine[J]. J Cell Mol Med, 2016, 20(8):1571-1588.
|
[55] |
Sequiera GL, Saravanan S, Dhingra S. Human-induced pluripotent stem cell-derived mesenchymal stem cells as an individual-specific and renewable source of adult stem cells [J]. Methods Mol Biol, 2017, 1553:183-190.
|
[56] |
Lian QZ, Zhang YE, Zhang JQ, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice[J]. Circulation, 2010, 121(9):1113-1123.
|
[57] |
Wei H, Tan G, Manasi, et al. One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells[J]. Stem Cell Res, 2012, 9(2):87-100.
|
[58] |
Frobel J, Hemeda H, Lenz M, et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells[J]. Stem Cell Reports, 2014, 3(3):414-422.
|