1 |
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J]. Cardiovasc Res, 2014, 103(4):530-541.
|
2 |
Bao Q, Chen L, Li J, et al. Role of microRNA-124 in cardiomyocyte hypertrophy inducedby angiotensin II[J]. Cell Mol Biol (Noisy-le- grand), 2017, 63(4):23-27.
|
3 |
Velmurugan BK, Chang RL, Marthandam Asokan S, et al. A minireview of E4BP4/NFIL3 in heart failure[J]. J Cell Physiol, 2018, 233(11):8458-8466.
|
4 |
Sambandan S, Akbalik G, Kochen L, et al. Activity-dependent spatially localized miRNA maturation in neuronal dendrites[J]. Science, 2017, 355(6325):634-637.
|
5 |
Cheng HL, Fu CY, Kuo WC, et al. Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system[J]. Lab Chip, 2018, 18(19):2917-2925.
|
6 |
Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, et al. Genetics of hypertrophic cardiomyopathy: A review of current state[J]. Clin Genet, 2018, 93(1):3-14.
|
7 |
Vegter EL, Ovchinnikova ES, Silljé HHW, et al. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure[J]. PLoS One, 2017, 12(5):e0177242.
|
8 |
Vegter EL, Ovchinnikova ES, Van Veldhuisen DJ, et al. Low circulating microRNA levels inheart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations[J]. Clin Res Cardiol, 2017, 106(8):598-609.
|
9 |
Wang K, Gan TY, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression[J]. Cell Death Differ, 2017, 24(6):1111-1120.
|
10 |
王新陆, 崔琳, 王幼平, 等. 基于AngⅡ诱导心肌细胞凋亡探讨中医药在离体实验中的研究方法[J]. 中华中医药杂志, 2017, 32(10):4699-4704.
|
11 |
Huang ZP, Wang DZ. miR-22 in smooth muscle cells: a potential therapy for cardiovascular disease[J]. Circulation, 2018, 137(17):1842-1845.
|
12 |
Malizia AP, Wang DZ. MicroRNAs in cardiomyocyte development[J]. Wiley Interdiscip Rev Syst Biol Med, 2011, 3(2):183-190.
|
13 |
Zhu QL, Zhan DM, Chong YK, et al. MiR-652-3p promotes bladder cancer migration and invasion by targeting KCNN3[J]. Eur Rev Med Pharmacol Sci, 2019, 23(20):8806-8812.
|
14 |
Jiang Q, Lu X, Huang P, et al. Expression of miR-652-3p and effect on apoptosis and drug sensitivity in pediatric acute lymphoblastic leukemia[J]. Biomed Res Int, 2018, 2018:5724686.
|
15 |
Pilbrow AP, Cordeddu L, Cameron VA, et al. Circulating miR-323-3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes[J]. Int J Cardiol, 2014, 176(2):375-385.
|
16 |
Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2[J]. Mech Ageing Dev, 2017, 161(Pt B):201-210.
|
17 |
Zhou MC, Liao YH, Tu X. The role of transcription factors in atrial fibrillation[J]. J Thorac Dis, 2015, 7(2):152-158.
|
18 |
徐小桐, 张昕, 杜娟, 等. 同源异型框基因Prrx功能的研究进展[J]. 中国畜牧兽医, 2017, 44(2):607-612.
|
19 |
Tucker NR, Dolmatova EV, Lin H, et al. Diminished PRRX1 expression is associated with increased risk of atrial fibrillation and shortening of the cardiac action potential[J]. Circ Cardiovasc Genet, 2017, 10(5). pii: e001902.
|
20 |
Edward Pfahnl A. Sequencing deeper to find the genetic mechanism of atrial fibrillation[J]. Heart Rhythm, 2014, 11(3):458.
|