切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (01) : 7 -12. doi: 10.3877/cmj.j.issn.2095-1221.2020.01.002

所属专题: 总编推荐 文献

论著

miR-652-3p靶向同源异型核基因1对血管紧张素Ⅱ诱导的心肌细胞凋亡的影响
邴森1, 袁博2,(), 王昌育1, 万毅3   
  1. 1. 710000 西安市第三医院心内科
    2. 710054 西安市第九医院心血管内科
    3. 710000 西安,空军军医大学(第四军医大学)卫勤教研室
  • 收稿日期:2019-10-16 出版日期:2020-02-01
  • 通信作者: 袁博

Effects of miR-652-3p targeting homeotype nuclear gene 1 in the regulation of angiotensin Ⅱ-induced cardiomyocyte apoptosis

Sen Bing1, Bo Yuan2,(), Changyu Wang1, Yi Wan3   

  1. 1. Department of Cardiolgy, Xi'an Third Hospital, Xi'an 710000, China
    2. Department of Cardiolgy, Xi'an Ninth Hospital, Xi'an 710054, China
    3. Air Force Military Medical University (Fourth Medical Medical University), Wei Qin Teaching and Resesrch Department, Xi'an 71000, China
  • Received:2019-10-16 Published:2020-02-01
  • Corresponding author: Bo Yuan
  • About author:
    Corresponding author: Yuan Bo, Email:
引用本文:

邴森, 袁博, 王昌育, 万毅. miR-652-3p靶向同源异型核基因1对血管紧张素Ⅱ诱导的心肌细胞凋亡的影响[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(01): 7-12.

Sen Bing, Bo Yuan, Changyu Wang, Yi Wan. Effects of miR-652-3p targeting homeotype nuclear gene 1 in the regulation of angiotensin Ⅱ-induced cardiomyocyte apoptosis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(01): 7-12.

目的

探讨miR-652-3p靶向同源异型核基因1(PRRX1)对血管紧张素Ⅱ(AngⅡ)诱导的心肌细胞凋亡的影响。

方法

大鼠心肌细胞H9c2细胞采用正常培养基培养为对照组细胞,用含1 μmol/L AngⅡ的培养基培养为AngⅡ组细胞;分别转染miR-652-3p阳性对照序列(NC)和转染miR-652-3p mimics后用含1 μmol/L AngⅡ的培养基培养为AngⅡ+NC组和AngⅡ+miR-652-3p组细胞;将miR-652-3p mimics分别与PRRX1阳性对照质粒和PRRX1过表达质粒转染至H9c2细胞中用含1 μmol/L AngⅡ的培养基培养,分别为AngⅡ+miR-652-3p+ Vctor组和AngⅡ+miR-652-3p+PRRX1组细胞。实时荧光定量PCR (RT-qPCR)检测H9c2细胞中miR-652-3p表达水平,流式细胞术检测细胞凋亡,用Western blot检测细胞中PRRX1、Bax和Bcl-2蛋白表达水平。双荧光素酶报告基因实验验证H9c2细胞中miR-652-3p与PRRX1调控关系。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。

结果

与对照组比较,AngⅡ组H9c2细胞中miR-652-3p水平(1.00±0.08比0.21±0.05)、Bcl-2蛋白水平(0.83±0.08比0.40±0.04)均较低,而PRRX1蛋白水平(0.06±0.01比0.41±0.04)、凋亡率(5.02﹪±1.41﹪比25.33﹪±3.75﹪)、Bax蛋白水平(0.46±0.05比0.96±0.10)均较高,差异具有统计学意义(P均< 0.05)。与AngⅡ+NC组比较,AngⅡ+miR-652-3p组H9c2细胞中miR-652-3p的表达水平(0.24±0.06比0.98±0.07)、Bcl-2蛋白水平(0.38±0.04比0.72±0.07)均较高,而PRRX1蛋白水平(0.39±0.04比0.13±0.01)、凋亡率(27.02﹪±4.11﹪比12.19﹪±1.63﹪)、Bax蛋白水平(0.95±0.09比0.53±0.05)均较低,差异具有统计学意义(P均< 0.05)。与AngⅡ+miR-652-3p+Vctor组比较,AngⅡ+miR-652-3p+PRRX1组H9c2细胞凋亡率(12.88﹪±1.84﹪比25.45﹪±3.58﹪)、PRRX1蛋白水平(0.13±0.01比0.35±0.04)和Bax蛋白水平(0.54±0.05比0.82±0.08)均较高,差异具有统计学意义(P均< 0.05),而Bcl-2蛋白表达水平(0.72±0.07比0.46±0.05)降低,差异具有统计学意义(P < 0.05)。

结论

AngⅡ能够下调心肌细胞中miR-652-3p的表达,上调miR-652-3p可通过靶向抑制PRRX1的表达减少AngⅡ诱导的H9c2细胞凋亡。

Objective

To investigate the effect of miR-652-3p targeting autonomous heterologous nuclear gene 1 (PRRX1) in the regulation of angiotensinⅡ (AngII) -induced cardiomyocyte apoptosis.

Methods

Rat cardiac cell H9c2 cultured under normal conditions were used as the control group, while AngⅡgroup were established in medium containing 1 μmol/L AngⅡ. These cells were transfected with miR-652-3p+Vctor and miR-652-3p mimics respectively. In addition AngⅡ-H9c2 cells transfected with miR-652-3p mimics were transfected with pc-PRRX1 and overexpressed-PRRX1. The expression of miR-652-3p in H9c2 was determined by quantitative real-time PCR (qRT-qPCR) . Detection of cell apoptosis was evaluated by using flow cytometry. In addition the protein expression levels of Bax and Bcl-2 were assessed by Western blot analysis. Gene regulatory relations between miR-652-3p and PRRX1 were confirmed by Dual-Luciferase reporter gene system. The t-test was applied for comparison between two groups and single factor variance analysis (one-way ANOVA) was used for comparison among several groups. The SNK-q test method was used to compare between groups.

Results

Compared with control group, the level of miR-652-3p (1.00±0.08 vs 0.21±0.05) and Bcl-2 protein (0.83±0.08 vs 0.40±0.04) in H9c2 cells were lower in AngⅡgroup, while PRRX1 protein level (0.06±0.01 vs 0.41±0.04) , apoptosis rate (5.02﹪±1.41﹪vs 25.33﹪±3.75﹪) , Bax protein level (0.46±0.05 vs 0.96±0.10) were higher (all P< 0.05) . Compared with AngⅡ+NC group, the expression level of miR-652-3p (0.24±0.06 vs 0.98±0.07) and Bcl-2 protein level in the AngⅡ+miR-652-3p group (0.38±0.04 vs 0.72±0.07) were higher while the PRRX1 protein level (0.39±0.04 vs 0.13±0.01) , and apoptosis rate (27.02﹪±4.11﹪ vs 12.19﹪±1.63﹪) , Bax protein level (0.95±0.09 vs 0.53±0.05) were lower (all P< 0.05) . Compared with the AngⅡ+miR-652-3p+Vctor group, the apoptosis rate of H9c2 cells (12.88﹪±1.84﹪vs 25.45﹪±3.58﹪) as well as expression of PRRX1 protein (0.13±0.01 vs 0.35±0.04) and Bax protein (0.54±0.05 vs 0.82±0.08) in the AngⅡ+ miR-652-3p+PRRX1 group were higher (all P< 0.05) , whereas Bcl-2 protein level (0.72±0.07 vs 0.46±0.05) was lower (all P< 0.05) .

Conclusion

AngⅡcould down-regulatethe expression of miR-652-3p in cardiomyocytes. Additionally, Up-regulation of miR-652-3p could reduce the apoptosis of H9c2 cells induced by AngⅡ by targeting the inhibition of PRRX1 expression.

图1 上调miR-652-3p对AngⅡ诱导H9c2细胞中PRRX1蛋白表达的影响
表1 不同组H9c2细胞中miR-652-3p和PRRX1蛋白表达水平比较(±s n = 3)
图2 miR-652-3p与PRRX13'UTR的结合位点
表2 不同组H9c2细胞相对荧光素酶活性比较(±sn = 3)
图3 流式细胞术检测上调miR-652-3p后AngⅡ诱导的H9c2细胞凋亡
图4 Western blot检测上调miR-652-3p后AngⅡ诱导H9c2细胞Bax和Bcl-2蛋白表达
表3 上调miR-652-3p后AngⅡ诱导的H9c2细胞凋亡率及Bax和Bcl-2表达水平(±sn = 3)
图5 流式细胞术检测上调miR-652-3p和过表达PRRX1后AngⅡ诱导H9c2细胞凋亡
图6 Western blot检测上调miR-652-3p和过表达PRRX1后AngⅡ诱导的H9c2细胞Bax和Bcl-2蛋白表达
表4 上调miR-652-3p和过表达PRRX1后AngⅡ诱导H9c2细胞凋亡率及PRRX1、Bax和Bcl-2蛋白水平比较(±sn = 3)
1
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J]. Cardiovasc Res, 2014, 103(4):530-541.
2
Bao Q, Chen L, Li J, et al. Role of microRNA-124 in cardiomyocyte hypertrophy inducedby angiotensin II[J]. Cell Mol Biol (Noisy-le- grand), 2017, 63(4):23-27.
3
Velmurugan BK, Chang RL, Marthandam Asokan S, et al. A minireview of E4BP4/NFIL3 in heart failure[J]. J Cell Physiol, 2018, 233(11):8458-8466.
4
Sambandan S, Akbalik G, Kochen L, et al. Activity-dependent spatially localized miRNA maturation in neuronal dendrites[J]. Science, 2017, 355(6325):634-637.
5
Cheng HL, Fu CY, Kuo WC, et al. Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system[J]. Lab Chip, 2018, 18(19):2917-2925.
6
Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, et al. Genetics of hypertrophic cardiomyopathy: A review of current state[J]. Clin Genet, 2018, 93(1):3-14.
7
Vegter EL, Ovchinnikova ES, Silljé HHW, et al. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure[J]. PLoS One, 2017, 12(5):e0177242.
8
Vegter EL, Ovchinnikova ES, Van Veldhuisen DJ, et al. Low circulating microRNA levels inheart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations[J]. Clin Res Cardiol, 2017, 106(8):598-609.
9
Wang K, Gan TY, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression[J]. Cell Death Differ, 2017, 24(6):1111-1120.
10
王新陆, 崔琳, 王幼平, 等. 基于AngⅡ诱导心肌细胞凋亡探讨中医药在离体实验中的研究方法[J]. 中华中医药杂志, 2017, 32(10):4699-4704.
11
Huang ZP, Wang DZ. miR-22 in smooth muscle cells: a potential therapy for cardiovascular disease[J]. Circulation, 2018, 137(17):1842-1845.
12
Malizia AP, Wang DZ. MicroRNAs in cardiomyocyte development[J]. Wiley Interdiscip Rev Syst Biol Med, 2011, 3(2):183-190.
13
Zhu QL, Zhan DM, Chong YK, et al. MiR-652-3p promotes bladder cancer migration and invasion by targeting KCNN3[J]. Eur Rev Med Pharmacol Sci, 2019, 23(20):8806-8812.
14
Jiang Q, Lu X, Huang P, et al. Expression of miR-652-3p and effect on apoptosis and drug sensitivity in pediatric acute lymphoblastic leukemia[J]. Biomed Res Int, 2018, 2018:5724686.
15
Pilbrow AP, Cordeddu L, Cameron VA, et al. Circulating miR-323-3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes[J]. Int J Cardiol, 2014, 176(2):375-385.
16
Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2[J]. Mech Ageing Dev, 2017, 161(Pt B):201-210.
17
Zhou MC, Liao YH, Tu X. The role of transcription factors in atrial fibrillation[J]. J Thorac Dis, 2015, 7(2):152-158.
18
徐小桐, 张昕, 杜娟, 等. 同源异型框基因Prrx功能的研究进展[J]. 中国畜牧兽医, 2017, 44(2):607-612.
19
Tucker NR, Dolmatova EV, Lin H, et al. Diminished PRRX1 expression is associated with increased risk of atrial fibrillation and shortening of the cardiac action potential[J]. Circ Cardiovasc Genet, 2017, 10(5). pii: e001902.
20
Edward Pfahnl A. Sequencing deeper to find the genetic mechanism of atrial fibrillation[J]. Heart Rhythm, 2014, 11(3):458.
[1] 巨容, 胡旭红, 徐若梅, 郑毅, 傅益永. 妊娠期高血压疾病患者母、胎转化生长因子-β1、血管紧张素Ⅱ及血管内皮生长因子表达水平分析[J]. 中华妇幼临床医学杂志(电子版), 2014, 10(06): 774-778.
[2] 于生友, 于力, 郝志宏, 张瑶. 基于siRNA技术的TRPC6基因沉默对血管紧张素Ⅱ诱导的足细胞自噬和凋亡的影响[J]. 中华损伤与修复杂志(电子版), 2017, 12(01): 27-33.
[3] 杨靖, 刘玲英, 尹会男, 柴家科. 血管紧张素Ⅱ对人脐带间充质干细胞生物学特性的影响[J]. 中华损伤与修复杂志(电子版), 2015, 10(05): 395-401.
[4] 李公豪, 赵艳丽, 彭中兴, 尹德录, 赵云峰. 下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 93-99.
[5] 郑伟, 常虎林, 海军, 宋晓雪, 杜立学. AngⅡ通过激活Notch1/Sox2通路对肝星状细胞LX2的活化和增殖的作用[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 156-160.
[6] 樊云, 乔晞, 王利华. Intermedin对血管紧张素Ⅱ诱导的NRK- 52E细胞纤维化的影响及机制研究[J]. 中华肾病研究电子杂志, 2016, 05(01): 23-28.
[7] 王建华, 林艳, 吴永东, 王有宝. 经皮撬拨复位内固定技术对难复性股骨粗隆间骨折老年患者NE、AngⅡ水平及髋关节功能的影响[J]. 中华老年骨科与康复电子杂志, 2021, 07(01): 9-14.
[8] 莫翠瑶, 刘云峰. 2型糖尿病胰岛素抵抗与肾素-血管紧张素-醛固酮系统的研究进展[J]. 中华临床医师杂志(电子版), 2017, 11(12): 1942-1945.
[9] 刘正霞, 蔡诗昆, 周萍, 刘莹, 鲁翔. 雌激素对心肌肥厚小鼠T淋巴细胞免疫调节作用的影响[J]. 中华老年病研究电子杂志, 2014, 01(01): 19-23.
阅读次数
全文


摘要