切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 93 -99. doi: 10.3877/cma.j.issn.2095-1221.2022.02.005

论著

下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响
李公豪1, 赵艳丽1, 彭中兴1, 尹德录1, 赵云峰1,()   
  1. 1. 222061 连云港,江苏省连云港市第一人民医院心血管内科;222061 连云港,江苏省连云港市南京医科大学康达学院第一附属医院心血管内科
  • 收稿日期:2022-01-24 出版日期:2022-04-01
  • 通信作者: 赵云峰
  • 基金资助:
    南京医科大学康达学院科研发展基金(KD2019KYJJYB018)

Effect of down-regulation of angiopoietin-like protein 7 expression on AngⅡ-mediated inflammatory response of vascular smooth muscle cells

Gonghao Li1, Yanli Zhao1, Zhongxing Peng1, Delu Yin1, Yunfeng Zhao1,()   

  1. 1. Department of Cardiology, the First People's Hospital of Lianyungang, Lianyun gang 222061, China; Department of Cardiology, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyun gang 222061, China
  • Received:2022-01-24 Published:2022-04-01
  • Corresponding author: Yunfeng Zhao
引用本文:

李公豪, 赵艳丽, 彭中兴, 尹德录, 赵云峰. 下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 93-99.

Gonghao Li, Yanli Zhao, Zhongxing Peng, Delu Yin, Yunfeng Zhao. Effect of down-regulation of angiopoietin-like protein 7 expression on AngⅡ-mediated inflammatory response of vascular smooth muscle cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(02): 93-99.

目的

探讨RNA干扰血管生成素样蛋白7 (Angptl7)基因对血管紧张素Ⅱ(AngⅡ)诱导的血管平滑肌细胞(VSMC)炎症因子的影响及其作用机制。

方法

体外培养人VSMC,分为常规F12K培养基培养(对照)和1 μg/mL AngII培养24 h。VSMC用AngⅡ(1 μg/mL)处理24 h后,采用siRNA-Angptl7和阴性对照siRNA-NC在Lipofectamine 2000介导下转染VSMC。RT-qPCR检测mRNA表达水平;Griess反应测定一氧化氮(NO)含量;蛋白免疫印记法检测相关蛋白的改变;酶联免疫吸附法检测VSMC中炎症因子肿瘤坏死因子α(TNF-α)、白细胞介素-1β (IL-1β)和IL-6水平。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,两组间比较采用独立样本t检验。

结果

与对照比较,1 μg/mL AngⅡ处理可促进VSMC中Angptl7 mRNA (0.97±0.06比3.05±0.21)和蛋白表达(1.01±0.12比1.61±0.14),亦可促进VSMC中IL-1β[(45.21±8.10)比(126.17±11.77) pg/mL]、IL-6[(50.50±7.51)比(108.50±9.51)pg/mL]和TNF-α的表达[(60.77±9.58)比(185.67±17.35)pg/mL],差异有统计学意义(P均< 0.01)。与对照和转染siRNA-NC相比,转染siRNA-Angptl7下调Angptl7蛋白表达(0.99±0.12,0.98±0.12比0.44±0.14,P < 0.01)。与AngⅡ干预组相比,siRNA-Angptl7降低AngⅡ介导的VSMC炎症反应相关蛋白TNF-α、IL-6和IL-1β的表达,核因子κB (NF-κB)/诱导型一氧化氮合酶(iNOS)/环氧化酶2 (COX-2)信号通路相关蛋白NF-κB、iNOS和COX-2表达及NO含量亦降低,差异有统计学意义(P均< 0.01)。与siRNA-NC相比,siRNA-Angptl7组AngⅡ诱导的VSMC炎症反应相关蛋白TNF-α (0.99±0.13比0.51±0.12)、IL-6 (1.00±0.12比0.38±0.05)和IL-1β的表达(0.99±0.14比0.48±0.11),NF-κB (1.00±0.10比0.42±0.08)、iNOS (1.02±0.12比0.42±0.10)和COX-2表达(1.00±0.11比0.52±0.12)均降低,NO含量[(54.78±2.76)比(18.08±3.61)μmol/L]亦降低,差异有统计学意义(P均< 0.01)。

结论

AngⅡ可通过Angptl7促进VSMC炎症反应,下调Angptl7蛋白表达可以抑制VSMC的炎症反应,其作用机制可能与抑制NF-κB/iNOS-COX-2信号通路有关。

Objective

To investigate the effect of RNA interference of angiopoietin-like protein 7 (Angptl7) gene on angiotensinⅡ (AngⅡ) -induced inflammatory factors in vascular smooth muscle cells (VSMC) and its mechanism.

Methods

Human VSMC were cultured in conventional F12K medium in vitro (control group) and were treated with 1 μg/mL AngⅡ for 24 h respectively. After VSMCs were treated with AngⅡ (1 μg/mL) for 24 h, VSMCs were transfected with siRNA-Angptl7 and negative control siRNA-NC under the mediation of Lipofectamine 2000. The mRNA expression level was detected by RT-qPCR; nitric oxide (NO) content was determined by Griess reaction; changes of related proteins were detected by immunoblotting the effect of gene intervention on the inflammatory response of VSMC was observed. The levels of inflammatory factors TNF-α, IL-1β and IL-6 in VSMCs were detected by enzyme-linked immunosorbent assay. Data among multiple groups were compared with one-way ANOVA, LSD-t test was used for further comparison between two groups, and independent sample t-test was used for comparison between two groups.

Results

Compared with the control group, 1 μg/mL AngⅡtreatment could significantly increase the expression of Angptl7 mRNA (0.97±0.06 vs 3.05±0.21) and protein (1.01±0.12 vs 1.61±0.14) in VSMCs, and also promote the expression of IL-1β [ (45.21±8.10) vs (126.17±11.77) pg/mL], IL-6 [ (50.50±7.51) vs (108.50±9.51) pg/mL] and TNF-α [ (60.77±9.58) vs (185.67±17.35) pg/mL] in VSMCs, and the difference was statistically significant (P < 0.01) . Transfection of siRNA-Angptl7 down-regulated Angptl7 protein expression compared with control and transfected siRNA-NC groups (0.99±0.12, 0.98±0.12 vs 0.44±0.14, P < 0.01) . Compared with AngⅡ intervention group, siRNA-Angptl7 reduced the expression of AngⅡ-mediated VSMC inflammatory response-related proteins TNF-α, IL-6, IL-1β, Nuclear factor-κB (NF-κB) /inducible nitric oxide synthase (iNOS) /cyclooxygenase-2 (COX-2) signaling pathway-related protein NF-κB, iNOS and COX-2 expressions and NO content were also decreased, and the differences were statistically significant (all P < 0.01) . Compared with the siRNA-NC group, the AngⅡ-induced VSMCs inflammatory response-related proteins TNF-α (0.99±0.13 vs 0.51±0.12) , IL-6 (1.00±0.12 vs 0.38±0.05) , IL-1β (0.99±0.14 vs 0.48±0.11) in siRNA-Angptl7 group, NF-κB (1.00±0.10 vs 0.42±0.08) , iNOS (1.02±0.12 vs 0.42±0.10) , and COX-2 (1.00±0.11 vs 0.52±0.12) expressions were lower, and the NO content [ (54.78±2.76) vs (18.08±3.61) μmol/L] also decreased, and the differences were statistically significant (all P < 0.01) .

Conclusion

AngⅡ can promote the inflammatory response of VSMC through Angptl7. Downregulating the expression of Angptl7 gene can inhibit the inflammatory response of VSMCs, and its mechanism may be related to the inhibition of NF-κB/iNOS-COX-2 signaling pathway.

表1 引物序列信息
图1 AngⅡ对VSMC Angptl7的影响注:a图为AngⅡ对VSMC Angptl7 mRNA表达的影响;b图为AngⅡ对VSMC Angptl7蛋白表达的影响;c图为siRNA-Angptl7对VSMC Angptl7蛋白的影响;与对照比较,aP < 0.01;与siRNA-NC组比较,bP < 0.01;ns为差异无统计学意义
图2 AngⅡ对VSMC炎症因子IL-1β、IL-6和TNF-α表达的影响注:a、b、c图分别为IL-1β、IL-6和TNF-α表达;与对照比较,aP < 0.01
图3 siAngptl7对VSMC炎症相关因子的影响注:a图为转染siAngptl7对VSMC炎症因子蛋白表达的影响;b图为转染siAngptl7对VSMC NF-κB/iNOS-COX-2信号通路相关蛋白表达的影响
表2 siRNA-Angptl7对VSMC炎症因子表达的影响( ± s
图4 siRNA-Angptl7对炎症因子蛋白和NF-κB/iNOS-COX-2信号通路相关蛋白表达的影响注:a图为siRNA-Angptl7对炎症因子蛋白表达的影响;b图为siRNA-Angptl7对NF-κB/iNOS-COX-2信号通路相关蛋白表达的影响
表3 下调Angptl7对AngⅡ诱导的VSMC炎症反应的影响( ± s
图5 下调Angptl7对NO含量的影响注:与AngⅡ组和siRNA-NC+AngⅡ组相比较,aP < 0.01,ns为差异无统计学意义
图6 下调Angptl7蛋白表达抑制AngⅡ介导的VSMC炎症反应机制注:AngⅡ为血管紧张素Ⅱ;Angptl7为血管生成素样蛋白7;siRNA-Angptl7为血管生成素样蛋白7干扰RNA;TNF-α为肿瘤坏死因子α;IL-1β为白介素1β;IL-6白介素6;Receptor为受体;NF-KB为核因子κB;iNOS诱导型一氧化氮合酶;COX-2环氧合酶-2;VSMC为血管平滑肌细胞;inflammatory为炎症
1
Campbell NRC, Ordunez P, Giraldo G, et al. Who Hearts: aglobalprogram to reduce cardiovascular disease burden: experience implementing in the Americas and opportunities in Canada[J]. Can J Cardiol, 2021, 37(5):744-55.
2
Lancet T. Is the concept of hypertension as a disease unhelpful?[J]. Lancet, 2019, 394(10199):611.
3
Benjamin IJ, Kreutz R, Olsen MH, et al. Fixed-dose combination antihypertensive medications[J]. Lancet, 2019, 394(10199):611. doi: 10.1016/S0140-6736(19)31964-6.
4
GACD Hypertension Research Programme, Writing Group, Peiris D, et al. Behaviour change strategies for reducing blood pressure-related disease burden: findings from a global implementation research programme[J]. Implement Sci, 2015, 10:158. doi: 10.1186/s13012-015-0331-0.
5
Di Palo KE, Barone NJ. Hypertension and Heart Failure: Prevention, Targets, and Treatment[J]. Heart Fail Clin, 2020, 16(1):99-106.
6
Das S, Zhang E, Senapati P, et al. A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells[J]. Circ Res, 2018, 123(12):1298-1312.
7
Agita A, Alsagaff MT. Inflammation, immunity, and hypertension[J]. Acta Med Indones, 2017, 49(2):158-165.
8
Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review)[J]. Vascul Pharmacol, 2015, 71:40-56.
9
Caillon A, Schiffrin EL. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence[J]. Curr Hypertens Rep, 2016, 18(3):21. doi: 10.1007/s11906-016-0628-7.
10
Grootaert MOJ, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4):622-634.
11
Liu M, Gomez D. Smooth muscle cell phenotypic diversity[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9):1715-1723.
12
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis[J]. Acta Physiol (Oxf), 2015, 214(1):33-50.
13
Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging[J]. EMBO Mol Med, 2010, 2(7):247-257.
14
Xing R, Chen J, Li S, et al. VSMC-specific deletion of FAM3A attenuated ang II-promoted hypertension and cardiovascular hypertrophy[J]. Circ Res, 2020, 126(12):1746-1759.
15
Piqueras L, Sanz MJ. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways[J]. Free Radic Biol Med, 2020, 157:38-54.
16
Qian T, Wang K, Cui JS, et al. Angiopoietin-like protein 7 promotes an inflammatory phenotype in RAW264.7 macrophages through the P38 MAPK signaling pathway[J]. Inflammation, 2016, 39(3):974-985.
17
Zeng SY, Luo JF, Quan HY, et al. Protein arginine methyltransferase 2 inhibits angiotensin II-induced proliferation and inflammation in vascular smooth muscle Cells[J]. Biomed Res Int, 2018, 2018:1547452. doi: 10.1155/2018/1547452.
18
Zhang X, Sun Y. Chromodomain helicase DNA binding protein 1-like, a negative regulator of forkhead box O3a, promotes the proliferation and migration of angiotensin II-induced vascular smooth muscle cells[J]. Bioengineered, 2022, 13(2):2597-2609.
19
Lee SB, Lee WS, Shin JS, et al. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-alpha, and IL-6 via AP-1, NF-kappaB, and JAK-STAT inactivation in RAW 264.7 macrophages[J]. Int Immunopharmacol, 2017, 49:21-29.
20
Guo R, Han M, Song J, et al. Adiponectin and its receptors are involved in hypertensive vascular injury[J]. Molecular Medicine Reports, 2018, 17(1):209-215.
21
Huo KG, Richer C, Berillo O, et al. miR-431-5p knockdown protects against angiotensin II-induced hypertension and vascular injury[J]. Hypertension, 2019, 73(5):1007-1017.
22
Kim J, Lee KS, Kim JH, et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia[J]. Free Radic Biol Med, 2017, 104:185-98.
23
Rrn LS, Zhang L, Zhu D, et al. KMUP-1 regulates the vascular calcification in chronic renal failure by mediating NO/cGMP/PKG signaling pathway[J]. Life Sciences, 2020, 253:117683. doi: 10.1016/j.lfs.2020.117683.
24
Cinelli MA, Do HT, Miley GP, et al. Inducible nitric oxide synthase: regulation, structure, and inhibition[J]. Med Res Rev, 2020, 40(1):158-189.
25
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions[J]. Free Radic Biol Med, 2020, 146:16-35.
26
Li Y, Huang H, Liu B, et al. Inflammasomes as therapeutic targets in human diseases[J]. Signal Transduct Target Ther, 2021, 6(1):247. doi: 10.1038/s41392-021-00650-z.
27
Shaw J, Tang Z, Schneider H, et al. Inflammatory processes are specifically enhanced in endothelial cells by placental-derived TNF-α: Implications in preeclampsia (PE)[J]. Placenta, 2016, 43:1-8.
28
Ozeki A, Oogaki Y, Henmi Y, et al. Elevated S100A9 in preeclampsia induces soluble endoglin and IL-1β secretion and hypertension via the NLRP3 inflammasome[J]. J Hypertens, 2022, 40(1):84-93.
29
Cui J, Jia J. Natural COX-2 inhibitors as promising anti-inflammatory agents: an update[J]. Curr Med Chem, 2021, 28(18):3622-46.
30
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6):a001651. doi: 10.1101/cshperspect.a001651.
31
Gan Z, Huang D, Jiang J, et al. Captopril alleviates hypertension-induced renal damage, inflammation, and NF-kappaB activation[J]. Braz J Med Biol Res, 2018, 51(11):e7338. doi: 10.1590/1414-431X20187338.
32
Khan MA, Khan MJ. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1):1149-1158.
33
Du Y, Zhu Y, Teng X, et al. Toxicological effect of manganese on NF-kappaB/iNOS-COX-2 signaling pathway in chicken testes[J]. Biol Trace Elem Res, 2015, 168(1):227-234.
34
Zhao J, Bi W, Xiao S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice[J]. Sci Rep, 2019, 9(1):5790. doi: 10.1038/s41598-019-42286-8.
35
Pacurari M, Kafoury R, Tchounwou PB, et al. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling[J]. Int J Inflam, 2014, 2014:689360. doi: 10.1155/2014/689360.
36
Carbone C, Piro G, Merz V, et al. Angiopoietin-like proteins in angiogenesis, inflammation and cancer[J]. Int J Mol Sci, 2018, 19(2):431. doi: 10.3390/ijms19020431.
37
Han H. RNA interference to knock down gene expression[J]. Methods Mol Biol, 2018, 1706:293-302.
[1] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[2] 杜贵伟, 陆勇, 成博, 贺薏, 梁爽. 钬激光碎石术术后联合坦索罗辛治疗对输尿管结石患者的影响分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 491-496.
[3] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[4] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[5] 陈向军, 王在强, 王博荣, 王莉, 方芳, 金发光, 王光辉. PM2.5通过激活颗粒酶B/IL-18信号通路促进炎症因子表达[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 207-211.
[6] 方慧慧, 方明, 黄娟, 张华, 王晓娟. 布地格福吸入治疗对COPD患者IL-6、CRP水平及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 91-94.
[7] 方晓铵, 熊欢庆, 李玉娟, 刘刚, 金发光. E3泛素连接酶COP-1在脂多糖致小鼠急性肺损伤中的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 14-18.
[8] 张婵, 吕瑶, 张小燕, 张鸣青. 不同时机局部神经阻滞在开腹肝切除中的镇痛效果比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 189-194.
[9] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[10] 戴伟川, 郭协力, 方仲宁, 蔡文华, 洪天生, 田夏阳. 显微镜下周围神经松解术治疗腰椎间盘突出症术后残余神经症状的疗效分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 84-90.
[11] 李秀玲, 连少锋, 荣刘涛, 李登峰, 饶蕴玉. 利巴韦林联合复方嗜酸乳杆菌治疗轮状病毒肠炎患儿的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 369-372.
[12] 吕涛, 张琨, 李晨. 芍黄安肠汤治疗重度活动期溃疡性结肠炎大肠湿热证患者的疗效及对肠黏膜屏障、炎症因子和免疫功能的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 16-20.
[13] 买买提·依斯热依力, 尹强, 尹海龙, 李治建, 董雨微, 王永康, 克力木·阿不都热依木, 阿吉艾克拜尔·艾萨. 罗乐胃蜜膏抑制酸刺激诱导食管上皮细胞炎症发生的机制研究[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 137-142.
[14] 欧春影, 李晓宾, 郭靖, 朱亮, 许可, 王梦, 安晓雷. 丁苯酞对血管性认知障碍大鼠炎症因子的影响及对认知障碍的改善作用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 483-487.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?