切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 93 -99. doi: 10.3877/cma.j.issn.2095-1221.2022.02.005

论著

下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响
李公豪1, 赵艳丽1, 彭中兴1, 尹德录1, 赵云峰1,()   
  1. 1. 222061 连云港,江苏省连云港市第一人民医院心血管内科;222061 连云港,江苏省连云港市南京医科大学康达学院第一附属医院心血管内科
  • 收稿日期:2022-01-24 出版日期:2022-04-01
  • 通信作者: 赵云峰
  • 基金资助:
    南京医科大学康达学院科研发展基金(KD2019KYJJYB018)

Effect of down-regulation of angiopoietin-like protein 7 expression on AngⅡ-mediated inflammatory response of vascular smooth muscle cells

Gonghao Li1, Yanli Zhao1, Zhongxing Peng1, Delu Yin1, Yunfeng Zhao1,()   

  1. 1. Department of Cardiology, the First People's Hospital of Lianyungang, Lianyun gang 222061, China; Department of Cardiology, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyun gang 222061, China
  • Received:2022-01-24 Published:2022-04-01
  • Corresponding author: Yunfeng Zhao
引用本文:

李公豪, 赵艳丽, 彭中兴, 尹德录, 赵云峰. 下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 93-99.

Gonghao Li, Yanli Zhao, Zhongxing Peng, Delu Yin, Yunfeng Zhao. Effect of down-regulation of angiopoietin-like protein 7 expression on AngⅡ-mediated inflammatory response of vascular smooth muscle cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(02): 93-99.

目的

探讨RNA干扰血管生成素样蛋白7 (Angptl7)基因对血管紧张素Ⅱ(AngⅡ)诱导的血管平滑肌细胞(VSMC)炎症因子的影响及其作用机制。

方法

体外培养人VSMC,分为常规F12K培养基培养(对照)和1 μg/mL AngII培养24 h。VSMC用AngⅡ(1 μg/mL)处理24 h后,采用siRNA-Angptl7和阴性对照siRNA-NC在Lipofectamine 2000介导下转染VSMC。RT-qPCR检测mRNA表达水平;Griess反应测定一氧化氮(NO)含量;蛋白免疫印记法检测相关蛋白的改变;酶联免疫吸附法检测VSMC中炎症因子肿瘤坏死因子α(TNF-α)、白细胞介素-1β (IL-1β)和IL-6水平。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,两组间比较采用独立样本t检验。

结果

与对照比较,1 μg/mL AngⅡ处理可促进VSMC中Angptl7 mRNA (0.97±0.06比3.05±0.21)和蛋白表达(1.01±0.12比1.61±0.14),亦可促进VSMC中IL-1β[(45.21±8.10)比(126.17±11.77) pg/mL]、IL-6[(50.50±7.51)比(108.50±9.51)pg/mL]和TNF-α的表达[(60.77±9.58)比(185.67±17.35)pg/mL],差异有统计学意义(P均< 0.01)。与对照和转染siRNA-NC相比,转染siRNA-Angptl7下调Angptl7蛋白表达(0.99±0.12,0.98±0.12比0.44±0.14,P < 0.01)。与AngⅡ干预组相比,siRNA-Angptl7降低AngⅡ介导的VSMC炎症反应相关蛋白TNF-α、IL-6和IL-1β的表达,核因子κB (NF-κB)/诱导型一氧化氮合酶(iNOS)/环氧化酶2 (COX-2)信号通路相关蛋白NF-κB、iNOS和COX-2表达及NO含量亦降低,差异有统计学意义(P均< 0.01)。与siRNA-NC相比,siRNA-Angptl7组AngⅡ诱导的VSMC炎症反应相关蛋白TNF-α (0.99±0.13比0.51±0.12)、IL-6 (1.00±0.12比0.38±0.05)和IL-1β的表达(0.99±0.14比0.48±0.11),NF-κB (1.00±0.10比0.42±0.08)、iNOS (1.02±0.12比0.42±0.10)和COX-2表达(1.00±0.11比0.52±0.12)均降低,NO含量[(54.78±2.76)比(18.08±3.61)μmol/L]亦降低,差异有统计学意义(P均< 0.01)。

结论

AngⅡ可通过Angptl7促进VSMC炎症反应,下调Angptl7蛋白表达可以抑制VSMC的炎症反应,其作用机制可能与抑制NF-κB/iNOS-COX-2信号通路有关。

Objective

To investigate the effect of RNA interference of angiopoietin-like protein 7 (Angptl7) gene on angiotensinⅡ (AngⅡ) -induced inflammatory factors in vascular smooth muscle cells (VSMC) and its mechanism.

Methods

Human VSMC were cultured in conventional F12K medium in vitro (control group) and were treated with 1 μg/mL AngⅡ for 24 h respectively. After VSMCs were treated with AngⅡ (1 μg/mL) for 24 h, VSMCs were transfected with siRNA-Angptl7 and negative control siRNA-NC under the mediation of Lipofectamine 2000. The mRNA expression level was detected by RT-qPCR; nitric oxide (NO) content was determined by Griess reaction; changes of related proteins were detected by immunoblotting the effect of gene intervention on the inflammatory response of VSMC was observed. The levels of inflammatory factors TNF-α, IL-1β and IL-6 in VSMCs were detected by enzyme-linked immunosorbent assay. Data among multiple groups were compared with one-way ANOVA, LSD-t test was used for further comparison between two groups, and independent sample t-test was used for comparison between two groups.

Results

Compared with the control group, 1 μg/mL AngⅡtreatment could significantly increase the expression of Angptl7 mRNA (0.97±0.06 vs 3.05±0.21) and protein (1.01±0.12 vs 1.61±0.14) in VSMCs, and also promote the expression of IL-1β [ (45.21±8.10) vs (126.17±11.77) pg/mL], IL-6 [ (50.50±7.51) vs (108.50±9.51) pg/mL] and TNF-α [ (60.77±9.58) vs (185.67±17.35) pg/mL] in VSMCs, and the difference was statistically significant (P < 0.01) . Transfection of siRNA-Angptl7 down-regulated Angptl7 protein expression compared with control and transfected siRNA-NC groups (0.99±0.12, 0.98±0.12 vs 0.44±0.14, P < 0.01) . Compared with AngⅡ intervention group, siRNA-Angptl7 reduced the expression of AngⅡ-mediated VSMC inflammatory response-related proteins TNF-α, IL-6, IL-1β, Nuclear factor-κB (NF-κB) /inducible nitric oxide synthase (iNOS) /cyclooxygenase-2 (COX-2) signaling pathway-related protein NF-κB, iNOS and COX-2 expressions and NO content were also decreased, and the differences were statistically significant (all P < 0.01) . Compared with the siRNA-NC group, the AngⅡ-induced VSMCs inflammatory response-related proteins TNF-α (0.99±0.13 vs 0.51±0.12) , IL-6 (1.00±0.12 vs 0.38±0.05) , IL-1β (0.99±0.14 vs 0.48±0.11) in siRNA-Angptl7 group, NF-κB (1.00±0.10 vs 0.42±0.08) , iNOS (1.02±0.12 vs 0.42±0.10) , and COX-2 (1.00±0.11 vs 0.52±0.12) expressions were lower, and the NO content [ (54.78±2.76) vs (18.08±3.61) μmol/L] also decreased, and the differences were statistically significant (all P < 0.01) .

Conclusion

AngⅡ can promote the inflammatory response of VSMC through Angptl7. Downregulating the expression of Angptl7 gene can inhibit the inflammatory response of VSMCs, and its mechanism may be related to the inhibition of NF-κB/iNOS-COX-2 signaling pathway.

表1 引物序列信息
图1 AngⅡ对VSMC Angptl7的影响注:a图为AngⅡ对VSMC Angptl7 mRNA表达的影响;b图为AngⅡ对VSMC Angptl7蛋白表达的影响;c图为siRNA-Angptl7对VSMC Angptl7蛋白的影响;与对照比较,aP < 0.01;与siRNA-NC组比较,bP < 0.01;ns为差异无统计学意义
图2 AngⅡ对VSMC炎症因子IL-1β、IL-6和TNF-α表达的影响注:a、b、c图分别为IL-1β、IL-6和TNF-α表达;与对照比较,aP < 0.01
图3 siAngptl7对VSMC炎症相关因子的影响注:a图为转染siAngptl7对VSMC炎症因子蛋白表达的影响;b图为转染siAngptl7对VSMC NF-κB/iNOS-COX-2信号通路相关蛋白表达的影响
表2 siRNA-Angptl7对VSMC炎症因子表达的影响( ± s
图4 siRNA-Angptl7对炎症因子蛋白和NF-κB/iNOS-COX-2信号通路相关蛋白表达的影响注:a图为siRNA-Angptl7对炎症因子蛋白表达的影响;b图为siRNA-Angptl7对NF-κB/iNOS-COX-2信号通路相关蛋白表达的影响
表3 下调Angptl7对AngⅡ诱导的VSMC炎症反应的影响( ± s
图5 下调Angptl7对NO含量的影响注:与AngⅡ组和siRNA-NC+AngⅡ组相比较,aP < 0.01,ns为差异无统计学意义
图6 下调Angptl7蛋白表达抑制AngⅡ介导的VSMC炎症反应机制注:AngⅡ为血管紧张素Ⅱ;Angptl7为血管生成素样蛋白7;siRNA-Angptl7为血管生成素样蛋白7干扰RNA;TNF-α为肿瘤坏死因子α;IL-1β为白介素1β;IL-6白介素6;Receptor为受体;NF-KB为核因子κB;iNOS诱导型一氧化氮合酶;COX-2环氧合酶-2;VSMC为血管平滑肌细胞;inflammatory为炎症
1
Campbell NRC, Ordunez P, Giraldo G, et al. Who Hearts: aglobalprogram to reduce cardiovascular disease burden: experience implementing in the Americas and opportunities in Canada[J]. Can J Cardiol, 2021, 37(5):744-55.
2
Lancet T. Is the concept of hypertension as a disease unhelpful?[J]. Lancet, 2019, 394(10199):611.
3
Benjamin IJ, Kreutz R, Olsen MH, et al. Fixed-dose combination antihypertensive medications[J]. Lancet, 2019, 394(10199):611. doi: 10.1016/S0140-6736(19)31964-6.
4
GACD Hypertension Research Programme, Writing Group, Peiris D, et al. Behaviour change strategies for reducing blood pressure-related disease burden: findings from a global implementation research programme[J]. Implement Sci, 2015, 10:158. doi: 10.1186/s13012-015-0331-0.
5
Di Palo KE, Barone NJ. Hypertension and Heart Failure: Prevention, Targets, and Treatment[J]. Heart Fail Clin, 2020, 16(1):99-106.
6
Das S, Zhang E, Senapati P, et al. A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells[J]. Circ Res, 2018, 123(12):1298-1312.
7
Agita A, Alsagaff MT. Inflammation, immunity, and hypertension[J]. Acta Med Indones, 2017, 49(2):158-165.
8
Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review)[J]. Vascul Pharmacol, 2015, 71:40-56.
9
Caillon A, Schiffrin EL. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence[J]. Curr Hypertens Rep, 2016, 18(3):21. doi: 10.1007/s11906-016-0628-7.
10
Grootaert MOJ, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4):622-634.
11
Liu M, Gomez D. Smooth muscle cell phenotypic diversity[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9):1715-1723.
12
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis[J]. Acta Physiol (Oxf), 2015, 214(1):33-50.
13
Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging[J]. EMBO Mol Med, 2010, 2(7):247-257.
14
Xing R, Chen J, Li S, et al. VSMC-specific deletion of FAM3A attenuated ang II-promoted hypertension and cardiovascular hypertrophy[J]. Circ Res, 2020, 126(12):1746-1759.
15
Piqueras L, Sanz MJ. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways[J]. Free Radic Biol Med, 2020, 157:38-54.
16
Qian T, Wang K, Cui JS, et al. Angiopoietin-like protein 7 promotes an inflammatory phenotype in RAW264.7 macrophages through the P38 MAPK signaling pathway[J]. Inflammation, 2016, 39(3):974-985.
17
Zeng SY, Luo JF, Quan HY, et al. Protein arginine methyltransferase 2 inhibits angiotensin II-induced proliferation and inflammation in vascular smooth muscle Cells[J]. Biomed Res Int, 2018, 2018:1547452. doi: 10.1155/2018/1547452.
18
Zhang X, Sun Y. Chromodomain helicase DNA binding protein 1-like, a negative regulator of forkhead box O3a, promotes the proliferation and migration of angiotensin II-induced vascular smooth muscle cells[J]. Bioengineered, 2022, 13(2):2597-2609.
19
Lee SB, Lee WS, Shin JS, et al. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-alpha, and IL-6 via AP-1, NF-kappaB, and JAK-STAT inactivation in RAW 264.7 macrophages[J]. Int Immunopharmacol, 2017, 49:21-29.
20
Guo R, Han M, Song J, et al. Adiponectin and its receptors are involved in hypertensive vascular injury[J]. Molecular Medicine Reports, 2018, 17(1):209-215.
21
Huo KG, Richer C, Berillo O, et al. miR-431-5p knockdown protects against angiotensin II-induced hypertension and vascular injury[J]. Hypertension, 2019, 73(5):1007-1017.
22
Kim J, Lee KS, Kim JH, et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia[J]. Free Radic Biol Med, 2017, 104:185-98.
23
Rrn LS, Zhang L, Zhu D, et al. KMUP-1 regulates the vascular calcification in chronic renal failure by mediating NO/cGMP/PKG signaling pathway[J]. Life Sciences, 2020, 253:117683. doi: 10.1016/j.lfs.2020.117683.
24
Cinelli MA, Do HT, Miley GP, et al. Inducible nitric oxide synthase: regulation, structure, and inhibition[J]. Med Res Rev, 2020, 40(1):158-189.
25
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions[J]. Free Radic Biol Med, 2020, 146:16-35.
26
Li Y, Huang H, Liu B, et al. Inflammasomes as therapeutic targets in human diseases[J]. Signal Transduct Target Ther, 2021, 6(1):247. doi: 10.1038/s41392-021-00650-z.
27
Shaw J, Tang Z, Schneider H, et al. Inflammatory processes are specifically enhanced in endothelial cells by placental-derived TNF-α: Implications in preeclampsia (PE)[J]. Placenta, 2016, 43:1-8.
28
Ozeki A, Oogaki Y, Henmi Y, et al. Elevated S100A9 in preeclampsia induces soluble endoglin and IL-1β secretion and hypertension via the NLRP3 inflammasome[J]. J Hypertens, 2022, 40(1):84-93.
29
Cui J, Jia J. Natural COX-2 inhibitors as promising anti-inflammatory agents: an update[J]. Curr Med Chem, 2021, 28(18):3622-46.
30
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6):a001651. doi: 10.1101/cshperspect.a001651.
31
Gan Z, Huang D, Jiang J, et al. Captopril alleviates hypertension-induced renal damage, inflammation, and NF-kappaB activation[J]. Braz J Med Biol Res, 2018, 51(11):e7338. doi: 10.1590/1414-431X20187338.
32
Khan MA, Khan MJ. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1):1149-1158.
33
Du Y, Zhu Y, Teng X, et al. Toxicological effect of manganese on NF-kappaB/iNOS-COX-2 signaling pathway in chicken testes[J]. Biol Trace Elem Res, 2015, 168(1):227-234.
34
Zhao J, Bi W, Xiao S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice[J]. Sci Rep, 2019, 9(1):5790. doi: 10.1038/s41598-019-42286-8.
35
Pacurari M, Kafoury R, Tchounwou PB, et al. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling[J]. Int J Inflam, 2014, 2014:689360. doi: 10.1155/2014/689360.
36
Carbone C, Piro G, Merz V, et al. Angiopoietin-like proteins in angiogenesis, inflammation and cancer[J]. Int J Mol Sci, 2018, 19(2):431. doi: 10.3390/ijms19020431.
37
Han H. RNA interference to knock down gene expression[J]. Methods Mol Biol, 2018, 1706:293-302.
[1] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[2] 吴芳伟, 安向丽, 谢晓宁. 调控骨桥蛋白介导的中性粒细胞浸润减轻脓毒症小鼠肺损伤的研究[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 220-225.
[3] 朱美缔, 王树明, 郭思佳, 井维斌, 马明明, 刘锐. 丙戊酸钠对50%总体表面积Ⅲ度烫伤大鼠肺功能保护作用的研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 47-52.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 顾志波, 郝林, 陆明, 陈建刚. 光动力纳米载体联合si-P3H4治疗膀胱癌的初步探索[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 633-641.
[6] 樊伟, 王榆富, 张新龙. 低剂量七氟醚与羟考酮对腹腔镜腹股沟疝修补术麻醉效果[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(04): 443-446.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 宋昕, 耿涛, 刘长春. 老年下呼吸道感染者血清25-羟维生素D3水平与血清炎症因子水平的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 215-217.
[9] 吴权, 张建平, 程荣, 陈礼龙. 莫西沙星孟鲁司特钠对社区获得性肺炎疗效及炎症因子的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 882-884.
[10] 王雷, 华山, 陆振. 布地奈德与头孢哌酮舒巴坦钠对小儿重症肺炎的疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 536-538.
[11] 夏庆玲, 欧三桃. 成纤维细胞生长因子21与血管钙化关系研究进展[J]. 中华肾病研究电子杂志, 2022, 11(04): 231-234.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[14] 玉苏普·艾麦尔, 买买提·依斯热依力, 克力木·阿不都热依木. 胃食管反流病与NLRP-3炎症小体相关性研究进展[J]. 中华胃食管反流病电子杂志, 2022, 09(04): 209-214.
[15] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
阅读次数
全文


摘要