切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (06) : 368 -373. doi: 10.3877/cma.j.issn.2095-1221.2025.06.007

综述

人脐带间充质干细胞治疗神经系统疾病的机制及研究进展
刘丽丽, 王玮, 张志华()   
  1. 067000 承德,河北省承德医学院附属医院血液内科
  • 收稿日期:2025-02-25 出版日期:2025-12-01
  • 通信作者: 张志华
  • 基金资助:
    2022年河北省省级科技计划(自然科学基金)(H20222406041)

Mechanism and research progress of human umbilical cord mesenchymal stem cells in treating nervous system diseases

Lili Liu, Wei Wang, Zhihua Zhang()   

  1. Department of Hematology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
  • Received:2025-02-25 Published:2025-12-01
  • Corresponding author: Zhihua Zhang
引用本文:

刘丽丽, 王玮, 张志华. 人脐带间充质干细胞治疗神经系统疾病的机制及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 368-373.

Lili Liu, Wei Wang, Zhihua Zhang. Mechanism and research progress of human umbilical cord mesenchymal stem cells in treating nervous system diseases[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(06): 368-373.

人脐带间充质干细胞(hUC-MSCs)因其高增殖能力、低免疫原性及易获取性,在神经损伤修复领域展现出显著潜力。研究表明,hUC-MSCs能够通过向神经分化、旁分泌作用以及调节免疫微环境等多种途径,有效减轻神经功能损伤。本文旨在综述hUC-MSCs在神经系统疾病治疗中的最新研究进展及其潜在机制,并对其未来的临床应用前景进行展望,为神经再生医学的发展提供新的思路。

Human umbilical cord mesenchymal stem cells (hUC-MSCs) have shown significant potential in the field of neural injury repair due to their high proliferation capacity, low immunogenicity and easy accessibility. It has been demonstrated that hUC-MSCs can effectively attenuate neural functional damage through multiple pathways, such as promoting neural differentiation, exerting paracrine effects and regulating the immune microenvironment. This article aims to review the latest research progress and potential mechanisms of hUC-MSCs in the treatment of neurological diseases, and to prospect their future clinical application prospects, providing new ideas for the development of neural regenerative medicine.

1
谭佳梦,吴宇,陈建伟,等.间充质干细胞与内皮细胞3D仿生分布设计促进组织工程支架血管化的效果[J].新医学, 2025, 56(5):458-465.
2
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Res Ther, 2016, 7(1):125.
3
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem Cell Transplant on clinical treatment?[J]. Stem Cell Res Ther, 2020, 11(1):519.
4
Hwang JW, Choi S, Oh W, et al. Intracerebroventricular transplantation of human umbilical cord blood derived mesenchymal stem cells attenuates symptoms of repetitive mild traumatic brain injury (RM TBI)[J]. Cytotherapy, 2017, 19(5):S201.
5
Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell- derived exosomes[J]. Int Immunopharmacol, 2021, 97:107823.
6
Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3):339-347.
7
Cozene BM, Russo E, Anzalone R, et al. Mitochondrial activity of human umbilical cord mesenchymal stem cells[J]. Brain Circ, 2021, 7(1):33-36.
8
Ma L, Feng XY, Cui BL, et al. Human umbilical cord Wharton's Jelly- derived mesenchymal stem cells differentiation into nerve-like cells[J]. Chin Med J (Engl), 2005, 118(23):1987-1993.
9
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: cell therapy and regeneration potential[J]. J Tissue Eng Regen Med, 2019, 13:1738-1755.
10
Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci, 2019, 233:116733.
11
Bao CS, Li XL, Liu L, et al. Transplantation of human umbilical cord mesenchymal stem cells promotes functional recovery after spinal cord injury by blocking the expression of IL-7[J]. Eur Rev Med Pharmacol Sci, 2018, 22(19):6436-6447.
12
Sun XC, Wang H, Ma X, et al. Application of human umbilical cord mesenchymal stem cells in rat spinal cord injury model[J]. ASAIO J, 2023, 69(6):e256-e264.
13
Zhao C, Zhang L, KongW, et al. Umbilical cord-derived mesenchymal stem cells inhibit cadherin-11 expression by fibroblast-like synoviocytes in rheumatoid arthritis[J]. J Immunol Res, 2015, 2015:137695.
14
Wang M, Yang Y, Yang D, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro[J]. Immunology, 2009, 126(2):220-232.
15
Sun X, Hao H, Han Q, et al. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats[J]. Stem Cell Res Ther, 2017, 8:241.
16
Feng Z, Hua S, Li W, et al. Mesenchymal stem cells protect against TBI-induced pyroptosis in vivo and in vitro through TSG-6[J]. Cell Commun Signal, 2022, 20:125.
17
Bamshad C, Habibi Roudkenar M, Abedinzade M, et al. Human umbilical cord-derived mesenchymal stem cells-harvested mitochondrial transplantation improved motor function in TBI models through rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation[J]. Int Immunopharmacol, 2023, 118:110106.
18
Shi W, Huang CJ, Xu XD, et al. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury[J]. Acta Biomater, 2016, 45:247-261.
19
Zhu W, Chen L, Wu Z, et al. Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation[J]. Acta Biomater, 2022, 150:67-82.
20
Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury[J]. Regen Biomater, 2022, 10:rbac085.
21
Zhang L, Lin Y, Bai W, et al. Human umbilical cord mesenchymal stem cell-derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin-mediated mitophagy[J]. CNS Neurosci Ther, 2023, 29(8):2236-2258.
22
Wang S, Cheng H, Dai G, et al. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury[J]. Brain Res, 2013, 1532:76-84.
23
Hermans EC, Donega V, Heijnen CJ, et al. CXCL10 is a crucial chemoattractant for efficient intranasal delivery of mesenchymal stem cells to the neonatal hypoxic-ischemic brain[J]. Stem Cell Res Ther, 2024, 15(1):134.
24
Donega V, Nijboer CH, Braccioli L, et al. Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions[J]. PLoS One, 2014, 9(11):e112339.
25
Jiang Z, Wang J, Sun G, et al. BDNF-modified human umbilical cord mesenchymal stem cells-derived dopaminergic-like neurons improve rotation behavior of Parkinson's disease rats through neuroprotection and anti-neuroinflammation[J]. Mol Cell Neurosci, 2022, 123:103784.
26
Cui D, Sun D, Wang X, et al. Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy[J]. Cell Death Dis, 2017, 8(7):e2919.
27
Ji ES, Kim YM, Shin MS, et al. Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington's disease rats[J]. J Exerc Rehabil, 2015, 11(3):133-139.
28
Li F, Zhang K, Liu H, et al. The neuroprotective effect of mesenchymal stem cells is mediated through inhibition of apoptosis in hypoxic ischemic injury[J]. World J Pediatr, 2020, 16(2):193-200.
29
Cotten CM, Kimberley Fisher, Malcolm W, et al. A pilot phase I trial of allogeneic umbilical cord tissue-derived mesenchymal stromal cells in neonates with hypoxic-ischemic encephalopathy[J]. Stem Cells Transl Med, 2023, 12(6):355-364.
30
Wang YL, Liu XS, Wang SS, et al. Curcumin-activated mesenchymal stem cells derived from human umbilical cord and their effects on MPTP-mouse model of Parkinson's disease: a new biological therapy for Parkinson's disease[J]. Stem Cells Int, 2020, 2020:4636397.
31
樊志刚, 乔蕾. 酪氨酸羟化酶修饰人脐血间充质干细胞移植帕金森病大鼠纹状体内的多巴胺含量[J].中国组织工程研究, 2014, 18(45):7285-7289.
32
王娜, 陈乃耀. 脐带间充质干细胞对小胶质细胞增殖及活化的影响[J]. 山东大学学报(医学版), 2016, 54(10):16-20.
33
Zhang ZX, Zhou YJ, Gu P, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate parkinson's disease and neuronal damage through inhibition of microglia[J]. Neural Regen Res, 2023, 18(10):2291-2300.
34
Zhao J, Qu K, Jia S, et al. Efficacy and efficacy-influencing factors of stem cell transplantation on patients with parkinson's disease: a systematic review and meta-analysis[J]. Front Neurol, 2024, 15:1329343.
35
Yang Y, Pang M, Chen YY, et al. Human umbilical cord mesenchymal stem cells to treat spinal cord injury in the early chronic phase: study protocol for a prospective, multicenter, randomized, placebo-controlled, single-blinded clinical trial[J]. Neural Regen Res, 2020, 15(8):1532-1538.
36
Cai C, Li H, Tian Z, et al. HGF secreted by hUC-MSCs mitigates neuronal apoptosis to repair the injured spinal cord via phosphorylation of Akt/FoxO3a pathway[J]. Biochem Biophys Res Commun, 2024, 692:149321
37
Xiao X, Li W, Xu Z, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN[J]. Connect Tissue Res, 2022, 63(6):634-649.
38
Mi Li, Zhang T, Li P, et al. IL-4-primed human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate recovery in spinal cord injury via the miR-21-5p/PDCD4-mediated shifting of macrophage M1/M2 polarization[J]. Life Sci, 2025, 364:123441.
39
Wang N, Xiao Z, Zhao Y, et al. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury[J]. J Tissue Eng Regen Med, 2018, 12(2):e1154-e1163.
40
Na L, Wang S, Liu T, et al. Ultrashort wave combined with human umbilical cord mesenchymal stem cell (huc-msc) transplantation inhibits nlrp3 inflammasome and improves spinal cord injury via mk2/ttp signalling pathway[J]. Biomed Res Int, 2020, 2020:3021750.
41
Li M, Zhang T, Li P, et al. IL-4-primed human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate recovery in spinal cord injury via the miR-21-5p/PDCD4-mediated shifting of macrophage M1/M2 polarization[J]. Life Sci, 2025, 364:123441.
42
Yang Y, Cao TT, Tian ZM, et al. Subarachnoid transplantation of human umbilical cord mesenchymal stem cell in rodent model with subacute incomplete spinal cord injury: preclinical safety and efficacy study[J]. Exp Cell Res, 2020, 395(2):112184.
43
Wang Y, Lai X, Wu D, et al. Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats[J]. Stem Cell Res Ther, 2021, 12(1):117.
44
Wang Y, Ding Y, Guo C. Mesenchymal stem cells for the treatment of spinal cord injury in rat models: a systematic review and network meta-analysis[J]. Cell Transplant, 2024, 33:09636897241262992.
45
Akhlaghpasand M, Tavanaei R, Hosseinpoor M, et al. Safety and potential effects of intrathecal injection of allogeneic human umbilical cord mesenchymal stem cell-derived exosomes in complete subacute spinal cord injury: a first-in-human, single-arm, open-label, phase I clinical trial[J]. Stem Cell Res Ther, 2024, 15(1):264.
46
Kim JY, Rhim WK, Cha SG, et al. Bolstering the secretion and bioactivities of umbilical cord MSC-derived extracellular vesicles with 3D culture and priming in chemically defined media[J]. Nano Convergence, 2022, 9(1):57.
47
Wang P, Hu H, Li X, et al. BMP4 is insufficient to differentiate umbilical cord mesenchymal stem cells into germ cell-like cells in vitro[J]. Ginekologia Polska, 2023, 94(1):64-72.
48
Chen L, Xi H, Huang H, et al. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke[J]. Cell Transplant, 2013, 22 Suppl 1:S83-91.
49
Xiang J, Jiang T, Zhang W, et al. Human umbilical cord-derived mesenchymal stem cells enhanced HK-2 cell autophagy through MicroRNA-145 by inhibiting the PI3K/AKT/mTOR signaling pathway[J]. Exp Cell Res, 2019, 378(2):198-205.
50
Wei P, Jia M, Kong X, et al. Human umbilical cord-derived mesenchymal stem cells ameliorate perioperative neurocognitive disorder by inhibiting inflammatory responses and activating BDNF/TrkB/CREB signaling pathway in aged mice[J]. Stem Cell Res Ther, 2023, 14(1):263.
51
Li K, Liu Z, Wu P, et al. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1):451.
52
Chen C, Xu B, Li W, et al. New perspectives on the treatment of diabetic nephropathy: challenges and prospects of mesenchymal stem cell therapy[J]. Eur J Pharmacol, 2025, 998:177543.
53
Bai Y, Du Y, Yang Y, et al. Ultrasound-targeted microbubble destruction increases BBB permeability and promotes stem cell-induced regeneration of stroke by downregulating MMP8[J]. Cell Transplant, 2024, 33:9636897231223293.
54
Liu Y, Chen J, Liang H, et al. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling[J]. Stem Cell Res Ther, 2022, 13(1):258.
55
Kang H, Feng J, Peng Y, et al. Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis[J]. Stem Cell Res Ther, 2023, 14(1):328.
56
Pei W, Fu L, Guo W, et al. Efficacy and safety of mesenchymal stem cell therapy for ovarian ageing in a mouse model[J]. Stem Cell Res Ther, 2024, 15(1):96.
57
Krishnan I, Chan AML, Law JX, et al. Proteomic analysis of umbilical cord mesenchymal stem cell-derived extracellular vesicles: a systematic review[J]. Int J Mol Sci, 2024, 25(10):5340.
[1] 潘小东, 张京臣, 汤鲁明, 孙来芳. 鼻胃管减压联合鼻肠管营养支持对重症神经系统疾病患者预后的影响[J/OL]. 中华危重症医学杂志(电子版), 2017, 10(04): 230-234.
[2] 中国医师协会新生儿科医师分会, 北京医师协会新生儿科医师分会, 李秋平, 封志纯, 母得志, 唐军, 熊涛, 唐尚鸿. 早产儿脑室内出血预防专家共识(2025)[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 1-14.
[3] 刘晓虹, 杨浩鸣, 郑璇儿, 杨淑梅, 杨杰. 人脐带间充质干细胞对耐亚胺培南铜绿假单胞菌生长的抑制作用[J/OL]. 中华实验和临床感染病杂志(电子版), 2018, 12(01): 94-97.
[4] 周威, 叶啟发. 人脐带间充质干细胞在肝损伤中的应用研究进展[J/OL]. 中华移植杂志(电子版), 2019, 13(04): 323-326.
[5] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[6] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[7] 曾伟杰, 廖延, 胡樾, 胡隽源, 曾桂芳, 傅泽钦, 伍世铎, 梁晓, 谢长峰, 刘沐芸. 冻存前后人脐带间充质干细胞对T和B淋巴细胞免疫抑制能力的差异比较[J/OL]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 200-206.
[8] 赵琳, 张涛, 迟静薇, 李勇, 王韵阳, 吕文山, 王伟, 王颜刚. 人脐带间充质干细胞对1型糖尿病鼠肝脏损伤的保护作用[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 18-22.
[9] 陈奇, 孙翊夫, 吕晓霞, 张福强, 顾锐, 高旭, 邵立伟, 姜金兰. 人脐带间充质干细胞移植治疗脊髓损伤的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 08(04): 229-233.
[10] 程亚飞, 郭航. 中枢神经系统AQP4的调节机制研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(01): 48-54.
[11] 高飞, 刘佰运, 茆翔. Small Maf转录因子在神经系统疾病中的作用研究进展[J/OL]. 中华神经创伤外科电子杂志, 2020, 06(02): 113-117.
[12] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[13] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[14] 孟智宏. 醒脑开窍针刺法治疗多系统疾病的机制研究现状[J/OL]. 中华针灸电子杂志, 2023, 12(04): 142-145.
[15] 高海杰, 王宝军. TLR4信号通路与神经系统疾病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(01): 61-65.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?