切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (06) : 339 -345. doi: 10.3877/cma.j.issn.2095-1221.2025.06.003

论著

负载R848疏水性介孔二氧化硅纳米粒的制备及复极化巨噬细胞的研究
张婷1, 张延美2,3, 范皎1, 卜玉1, 张莉2,()   
  1. 1100853 北京,解放军总医院第二医学中心老年医学研究所
    2710038 西安,空军军医大学唐都医院超声医学科
    3621000 绵阳,四川省绵阳市中医医院超声医学科
  • 收稿日期:2025-08-29 出版日期:2025-12-01
  • 通信作者: 张莉

Preparation of R848-loaded hydrophobic mesoporous silica nanoparticles and study on its effects on the repolarization of macrophages

Ting Zhang1, Yanmei Zhang2,3, Jiao Fan1, Yu Pu1, Li Zhang2,()   

  1. 1Institute of Geriatrics, the Second Medical Center, People's Liberation Army General Hospital, Beijing 100853, China
    2Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
    3Department of Ultrasound Medicine, Mianyang Traditional Chinese Medicine Hospital, Mianyang 621000, China
  • Received:2025-08-29 Published:2025-12-01
  • Corresponding author: Li Zhang
引用本文:

张婷, 张延美, 范皎, 卜玉, 张莉. 负载R848疏水性介孔二氧化硅纳米粒的制备及复极化巨噬细胞的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(06): 339-345.

Ting Zhang, Yanmei Zhang, Jiao Fan, Yu Pu, Li Zhang. Preparation of R848-loaded hydrophobic mesoporous silica nanoparticles and study on its effects on the repolarization of macrophages[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(06): 339-345.

目的

制备苯基修饰的介孔二氧化硅(PMSN)负载免疫调节剂雷西莫特(R848),探讨PMSN-R848是否能将M2型巨噬细胞复极化为M1型。

方法

通过煅烧法制备介孔二氧化硅(MSN),加入苯基三乙氧基硅烷(PhTES)将MSN进行苯基修饰后负载R848得到PMSN-R848纳米粒,拟合R848标准曲线用酶标仪测量计算出PMSN负载R848的载药率,透射电镜观察PMSN和PMSN-R848结构,通过CCK-8测量PMSN-R848的细胞毒性,荧光电子显微镜检测PMSN-R848与巨噬细胞溶酶体共定位情况,流式细胞术检测PMSN-R848是否能复极化巨噬细胞。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

PMSN负载R848载药率为(36.97 ± 5.80)%,PMSN透射电镜呈有孔道的球形结构,PMSN-R848在球形结构表面可见吸附的颗粒,PMSN-R848无细胞毒性且能很好的定位于巨噬细胞溶酶体,M2型巨噬细胞与PMSN-R848共孵育后复极化为M1型。

结论

通过PMSN负载R848后能有效的将M2型巨噬细胞复极化为M1型。

Objective

Phenyl-modified mesoporous silica nanoparticles (PMSN) -loaded immunomodulator Resiquimod (R848) was prepared to investigate whether PMSN-R848 could repolarize M2-type macrophages to M1-type.

Methods

Mesoporous silica (MSN) was prepared by calcination, Phenyltriethoxysilane (PhTES) was added to modify MSN with phenyl and loaded with R848 to obtain PMSN-R848 nanoparticles. The drug loading efficiency of R848 on PMSN was calculated by measuring the R848 standard curve using an enzyme-linked immunosorbent assay (ELISA) reader. The structure of PMSN and PMSN-R848 was observed by transmission electron microscopy. The cytotoxicity of PMSN-R848 was assessed via the CCK-8 assay. Fluorescence electron microscopy (FEM) was employed to detect the colocalization of PMSN-R848 with macrophage lysosomes. Flow cytometry was performed to determine whether PMSN-R848 could repolarize macrophages. One-way analysis of variance was used for comparison between multiple groups, and LSD-t test was used for pairwise comparison between groups.

Results

The drug loading rate of PMSN loaded with R848 was (36.97 ± 5.80) %, the PMSN transmission electron microscope showed a spherical structure with pores, adsorbed particles could be seen on the surface of the spherical structure of PMSN-R848, PMSN-R848 was non-cytotoxic and could be well localized in macrophage lysosomes, and M2 macrophages were repolarized to the M1 phenotype after co-incubation with PMSN-R848.

Conclusion

The PMSN loaded with R848 could effectively repolarize M2 macrophages to M1.

图1 R848在无水乙醇中的光谱扫描和标准曲线检测注:a图为光谱扫描;b图为标准曲线
图2 透射电镜下观察PMSN和PMSN-R848的状态注:a图为PMSN;b图为PMSN-R848;×20 000;比例尺100 nm;PMSN为苯基修饰的介孔二氧化硅
图3 不同浓度的PMSN-R848细胞毒性检测(n = 3)注:PMSN为苯基修饰的介孔二氧化硅
图4 共聚焦显微镜下观察PMSN-R848与Raw264.7溶酶体共定位(DAPI-Cy5.5-溶酶体探针染色,×40)注:PMSN为苯基修饰的介孔二氧化硅
图5 显微镜下巨噬细胞的形态(×20,比例尺200 μm)注:IL为白细胞介素;PMSN为苯基修饰的介孔二氧化硅;LPS为脂多糖
图6 PMSN-R848对巨噬细胞复极化的结果注:IL为白细胞介素;PMSN为苯基修饰的介孔二氧化硅;LPS为脂多糖;a图为经过不同处理的巨噬细胞表达CD86分子的百分比(n = 3);b图为经过不同处理的巨噬细胞表达CD206分子的百分比(n = 3);*P < 0.05
表1 各组巨噬细胞表达CD86及CD206分子的百分比( ± sn = 3)
1
Basak U, Sarkar T, Mukherjee S, et al. Tumor-associated macrophages: an effective player of the tumor microenvironment[J]. Front Immunol, 2023, 14:1295257.
2
Liu L, Li Y, Li B. Interactions between cancer cells and tumor-associated macrophages in tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880(3):189344.
3
Qin R, Ren W, Ya G, et al. Role of chemokines in the crosstalk between tumor and tumor-associated macrophages[J]. Clin Exp Med, 2023, 23(5):1359-1373.
4
Marchesi M, Andersson E, Villabona L, et al. HLA-dependent tumour development: a role for tumour associate macrophages?[J]. J Transl Med, 2013, 11:247.
5
Wang YN, Wang YY, Wang J, et al. Vinblastine resets tumor-associated macrophages toward M1 phenotype and promotes antitumor immune response[J]. J Immunother Cancer, 2023, 11(8):e007253.
6
Liu KX, Joshi S. "Re-educating" tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma[J]. Front Immunol, 2020, 11:1947.
7
Fu LQ, Du WL, Cai MH, et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis[J]. Cell Immunol, 2020, 353:104119.
8
Frega G, Wu Q, Le Naour J, et al. Trial watch: experimental TLR7/TLR8 agonists for oncological indications[J]. Oncoimmunology, 2020, 9(1):1796002.
9
Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by Re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes[J]. Biomaterials, 2021, 268:120601.
10
Anfray C, Varela CF, Ummarino A, et al. Polymeric nanocapsules loaded with poly(I:C) and resiquimod to reprogram tumor-associated macrophages for the treatment of solid tumors[J]. Front Immunol, 2024, 14:1334800.
11
Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles in biomedicine: advances and prospects[J]. Adv Mater, 2025, 25:e12433.
12
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8):578-588.
13
Shang T, Yu X, Gu Y, et al. Supermolecular nanovehicles co-delivering TLR7/8-agonist and anti-CD47 siRNA for enhanced tumor immunotherapy[J]. Int J Biol Macromol, 2023, 251:126539.
14
Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors[J]. Nat Commun, 2021, 12(1):1999.
15
Ilyinskii PO, Roy CJ, O'Neil CP, et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release[J]. Vaccine, 2014, 32(24):2882-2895.
16
Lahooti B, Akwii RG, Zahra FT, et al. Targeting endothelial permeability in the EPR effect[J]. J Control Release, 2023, 361:212-235.
17
Ioniţă S, Lincu D, Mitran RA, et al. Resveratrol encapsulation and release from pristine and functionalized mesoporous silica carriers[J]. Pharmaceutics, 2022, 14(1):203.
18
Xu B, Li S, Shi R, et al. Multifunctional mesoporous silica nanoparticles for biomedical applications[J]. Signal Transduct Target Ther, 2023, 8(1):435.
19
Wu Z, Xiang H, Kim T, et al. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane[J]. J Colloid Interface Sci, 2006, 304(1):119-124.
20
Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers[J]. Acta Pharm Sin B, 2021, 11(4):903-924.
21
Shu Y, Cheng P. Targeting tumor-associated macrophages for cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188434.
22
Liu K X, Joshi S. "Re-educating" tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma[J]. Front Immunol, 2020, 11:1947.
23
Fu LQ, Du WL, Cai MH, et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis[J]. Cell Immunol, 2020, 353:104119.
24
Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy[J]. Front Immunol, 2022, 13: 888713.
[1] 金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.
[2] 张兆坤, 赵俊杰, 黄鹏飞, 王玺玉, 赵宇昊, 赵海燕. 微循环对巨噬细胞影响在激素性股骨头坏死机制探究[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 336-342.
[3] 黄洲龙, 张金丽, 周日兴, 于昊, 张志. 巨噬细胞向肌成纤维细胞转分化在纤维化疾病中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 271-275.
[4] 孟竹达, 靳亚杰, 郝冉, 赵二鹏. MMIF与围手术期指标预测甲状腺全切术后甲状旁腺功能减退的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 678-681.
[5] 刘沐芸, 侯凯翔, 韩奇鹏, 崔诗慧, 魏殿华, 符业优, 丁关焱, 从丽萍, 梁晓, 安刚. 脂肪与骨髓间充质干细胞的免疫调节作用及协同治疗潜力分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(04): 220-228.
[6] 张天麒, 宾晓芸. 阿托伐他汀对高脂饮食诱导的新西兰兔代谢功能障碍相关脂肪性肝病中巨噬细胞极化的作用及机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 167-178.
[7] 曾锐. 抑制急性肾损伤向慢性肾脏病转化:靶向致病性肾脏巨噬细胞纳米药物的应用[J/OL]. 中华肾病研究电子杂志, 2025, 14(05): 241-247.
[8] 李世明, 刘涛, 刘玲, 邱海波. 急性呼吸窘迫综合征炎症损伤中不同类型肺巨噬细胞功能作用的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 294-298.
[9] 聂沈琴, 郝亚楠, 孙婕, 高貂艳. 病毒性脑炎患儿血清NfL、MIP-1α、LRG1与神经系统后遗症的关系分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 281-287.
[10] 崔滨, 王丹慧, 王林, 陈国强. Treg细胞在神经病理性疼痛中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 303-308.
[11] 俞若婷, 高威, 刘宇浩, 刘琛. 肺挫伤病理生理机制及相关治疗研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 536-543.
[12] 赵志琪, 吴晓丽, 刘若琪, 曲卓敏, 李董冉, 赵凌霞. 巨噬细胞在糖尿病肾病中作用及治疗药物[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 544-549.
[13] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[14] 曹琪, 罗治文, 车云. CD68蛋白可预测ⅠB期肺鳞癌术后复发风险[J/OL]. 中华胸部外科电子杂志, 2025, 12(03): 144-151.
[15] 冯欣, 尤素伟, 史晓梅, 王相斌, 巩巧丽, 王俊英. 血清VEGF-A、HIF-1α、MIF水平与急性脑梗死并发脑心综合征的关联性研究[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 213-219.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?