切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 167 -178. doi: 10.3877/cma.j.issn.2095-1221.2025.03.005

论著

阿托伐他汀对高脂饮食诱导的新西兰兔代谢功能障碍相关脂肪性肝病中巨噬细胞极化的作用及机制研究
张天麒1, 宾晓芸1,()   
  1. 1. 533000 百色,广西壮族自治区百色市右江民族医学院基础医学院
  • 收稿日期:2025-03-05 出版日期:2025-06-01
  • 通信作者: 宾晓芸

The effects and mechanisms of atorvastatin on macrophage polarization in metabolic-associated fatty liver disease in New Zealand rabbits fed by high-fat diet

Tianqi Zhang1, Xiaoyun Bin1,()   

  1. 1. Youjiang Medical University For Nationalities, Guangxi Zhuang Autonomous Region, Baise 533000,China
  • Received:2025-03-05 Published:2025-06-01
  • Corresponding author: Xiaoyun Bin
引用本文:

张天麒, 宾晓芸. 阿托伐他汀对高脂饮食诱导的新西兰兔代谢功能障碍相关脂肪性肝病中巨噬细胞极化的作用及机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 167-178.

Tianqi Zhang, Xiaoyun Bin. The effects and mechanisms of atorvastatin on macrophage polarization in metabolic-associated fatty liver disease in New Zealand rabbits fed by high-fat diet[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(03): 167-178.

目的

探讨阿托伐他汀对高脂饮食诱导的新西兰兔代谢功能障碍相关脂肪性肝病(MAFLD)中巨噬细胞极化的作用及其相关机制。

方法

从GEO 数据库下载健康人群和MAFLD 患者的单细胞数据集。将15 只雄性新西兰兔分为正常组 (NCG)、高脂饮食组 (MCG)、高脂饮食+阿托伐他汀组 (PCG)。正常组给予基础饲料,其余各组给予高脂饲料。阿托伐他汀剂量为4 mg/ (kg·d)。8 周后,油红O 染色检测各组肝脏脂肪沉积的差异;Western blot 检测肝组织中Toll 样受体4/核因子κB (TLR4/NF-κB)的蛋白表达水平;流式细胞仪检测新西兰兔外周血中巨噬细胞亚型的比例。多组间比较采用单因素方差分析,组间两两比较采用 Bonferroni法进行校正。

结果

单细胞数据分析结果提示TLR4 在MAFLD 患者的巨噬细胞各亚型中均有表达,且与M2 型巨噬细胞极化相关。与NCG 组比较,MCG 组新西兰兔在高脂饮食喂养8周后,油红O 染色检测发现肝脏脂肪沉积增多;TLR4 蛋白的表达水平 (0.68 ± 0.08)比(0.37 ±0.06)、NF-κB 蛋白的表达水平 (1.81 ± 0.14)比(1.27 ± 0.13) 升高,差异具有统计学意义 (P 均 <0.001)。阿托伐他汀治疗后,PCG 组新西兰兔肝脏脂肪沉积减少;TLR4 蛋白的表达水平 (0.58 ±0.08)比 (0.68 ± 0.08)、NF-κB 蛋白的表达水平 (1.60 ± 0.14)比 (1.80 ± 0.14)降低;外周血中M2 巨噬细胞比例[(2.22 ± 0.16)%比 (0.42 ± 0.05)%]升高,差异具有统计学意义 (P 均 <0.001)。

结论

外周血巨噬细胞亚型与MAFLD 病情相关。阿托伐他汀可以减少高脂饮食诱导的新西兰兔肝脏脂肪沉积,调控外周血M1/M2 巨噬细胞极化和肝脏内TLR4/NF-κB 信号通路表达,参与肝脏炎症损伤的修复。

Objective

To investigate the effects and mechanisms of atorvastatin on macrophage polarization in high-fat diet-induced metabolic-associated fatty liver disease (MAFLD)in New Zealand rabbits.

Methods

Single-cell datasets from healthy individuals and MAFLD patients were downloaded from the GEO database. Fifteen male New Zealand rabbits were divided into normal control group (NCG), high-fat diet model group (MCG), and high-fat diet +atorvastatin treatment group (PCG). The rabbits in NCG were fed with standard diet, while those in other groups were fed with high-fat diet. Atorvastatin was administered at a dose of 4 mg/kg/day.After 8 weeks, Oil Red O staining was used to assess the differences in hepatic lipid deposition among groups. Western blot was performed to measure the protein expression levels of Toll-like receptor 4/ nuclear factor kappa B (TLR4/NF-κB) in liver tissues. Flow cytometry was used to determine the proportions of macrophage subtypes in peripheral blood. ANOVA-test was used for comparisons among multiple groups, and the Bonferroni method was used for pairwise comparisons between groups.

Results

Single-cell data analysis revealed that TLR4 is expressed across all macrophage subtypes in MAFLD patients and associated with M2 macrophage polarization. Compared to the NCG group, N the hepatic lipid depositionand the expression levels of TLR4 (0.68 ± 0.08 vs 0.37 ± 0.06),NF-κB proteins (1.81 ± 0.14 vs 1.27 ± 0.13) were significantly elevated in the MCG group after 8 weeks of high-fat diet feeding (P < 0.001), which could be restored after atorvastatin treatment(TLR4 protein 0.58 ± 0.08 vs 0.68 ± 0.08, NF-κB protein expression 1.60 ± 0.14 vs 1.81 ± 0.14) .Compared with MCG group, theproportion of M2 macrophages (0.42 ± 0.05)% vs (2.22 ± 0.16)%in peripheral blood was increased in PCG group (P < 0.001).

Conclusion

Peripheral blood macrophage subtypes are associated with MAFLD progression. Atorvastatin reduces hepatic lipid deposition in high-fat diet-induced New Zealand rabbits by modulating the TLR4/NF-κB signaling pathway and regulating M1/M2 macrophage polarization.

图1 健康组和MAFLD 组CD45+细胞聚类 注:a 图为健康组中相似基因转录组细胞群的聚类;b 图为根据标记基因定义a 图中细胞群;c 图为MAFLD 组中相似基因转录组细胞群的聚类;d 图为根据标记基因定义c 图中细胞群
表1 健康组和MAFLD 组CD45+细胞亚聚类分群及标记基因
表2 健康组和MAFLD 组巨噬细胞亚聚类分群及标记基因
图2 健康组巨噬细胞亚聚类 注:a 图为健康组CD45+细胞中的巨噬细胞;b 图为健康组巨噬细胞亚聚类结果;c 图为标记基因在亚聚类细胞群中的差异表达;d 图为根据标记基因定义b 图中巨噬细胞亚型
图3 MAFLD 组巨噬细胞亚聚类 注:a 图为MAFLD 组CD45+免疫细胞中的巨噬细胞;b 图为MAFLD 巨噬细胞亚聚类结果;c 图为标记基因在亚聚类细胞群中的差异表达;d 图为根据标记基因定义b 图中巨噬细胞亚型
图4 健康组不同亚型巨噬细胞之间的差异基因分析
图5 MAFLD 组不同亚型巨噬细胞之间的差异基因分析
图6 健康人群与MAFLD 患者的TLRs 表达情况 注:a 图为健康组细胞群中TLRs 的表达;b 图为MAFLD 组细胞群中TLRs 的表达;c 图为健康组细胞群中TLRs 的表达水平;d 图为MAFLD 组细胞群中TLRs 的表达水平
图7 健康人群与MAFLD 患者TLRs 在巨噬细胞中的分布 注:a ~ b 图为健康组TLRs 在巨噬细胞中的分布;c ~ d 图为MAFLD 组TLRs 在巨噬细胞中的分布
图8 8 周后各实验组肝脏标本和油红O 染色 注:a ~ c 图为肝脏解剖图;d ~ f 图为显微镜下观察肝脏中央区标本脂质沉积情况 (油红O 染色,×40),标尺为100 μm
图9 8 周后各实验组肝脏指数 注:**P < 0.001,n = 5
图10 4 周、8 周各实验组外周血单核细胞流式细胞仪检测CD86、CD206 比例检查
图11 4 周、8 周各实验组外周血M1/M2 巨噬细胞占比分析 注:a 图为 4 周、8 周后各实验组外周血M1 型巨噬细胞占比;b 图为 4 周、8 周各实验组外周血M2 型巨噬细胞占比分析,**P < 0.001,n = 5
图12 阿托伐他汀抑制TLR4/NF-κB 的蛋白质表达 注:a 图为8 周后各实验组TLR4、NF-κB 蛋白表达;b 图为各实验组TLR4 蛋白表达分析;c 图为各实验组NF-κB 蛋白表达分析;*P < 0.05,**P < 0.001,n = 5
1
Wang K, Zhang Y, Wang G, et al. FXR agonists for MASH therapy:lessons and perspectives from obeticholic acid[J]. Med Res Rev, 2024,44(2):568-586.
2
Chan KE, Koh TJL, Tang ASP, et al.Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: ametaanalysis and systematic review of 10 739 607 individuals[J]. J Clin Endocrinol Metab, 2022, 107(9):2691-2700.
3
Subudhi S, Drescher HK, Dichtel LE, et al. Distinct hepatic geneexpression patterns of nafld in patients with obesity[J]. Hepatol Commun,2022, 6(1):77-89.
4
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling nafld disease burden in China, France, Germany, Italy, Japan, Spain, united kingdom,and united states for the period 2016-2030[J]. J Hepatol, 2018,69(4):896-904.
5
Wang C, Ma C, Gong L,et al.Macrophage polarization and its role in liver disease[J]. Front Immunol,2021, 12:803037. doi: 10.3389/fimmu.2021.803037.
6
Ahamed F, Eppler N, Jones E, et al. Understanding macrophage complexity in metabolic dysfunction-associated steatotic liver disease:transitioning from the M1/M2 paradigm to spatial dynamics[J].Livers,2024, 4(3):455-478.
7
Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1):45-56.
8
Hesketh M, Sahin KB, West ZE, et al. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing[J]. Int J Mol Sci,2017, 18(7):1545. doi: 10.3390/ijms18071545.
9
Rughetti A, Bharti S, Savai R, et al.Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways[J]. Future Sci OA, 2024, 10(1):2387961. doi: 10.1080/20565623.2024.2387961.
10
Pan M, Cai C, Li W, et al. Ebselen improves lipid metabolism by activating PI3K/Akt and inhibiting TLR4/JNK signaling pathway to al leviate nonalcoholic fatty liver[J].Cytokine, 2024, 181:156671. doi:10.1016/j.cyto.2024.156671.
11
Taru V, Szabo G, Mehal W, et al. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation[J]. J Hepatol, 2024, 81(5):895-910.
12
Lu H, Wu L, Liu L, et al. Quercetin Ameliorates Kidney Injury and Fibrosis by Modulating M1/M2 Macrophage Polarization[J]. Biochem Pharmacol, 2018, 154:203-212.
13
Chan WK, Chuah KH, Rajaram RB, et al. Metabolic dysfunctionassociated steatotic liver disease (MASLD): A state-of-the-art review[J]. J Obes Metab Syndr, 2023, 32(3):197-213.
14
Ahsan F, Oliveri F, Goud HK, et al. Pleiotropic Effects of Statins in the Light of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis[J]. Cureus, 2020, 12(9):e10446. doi: 10.7759/cureus.10446.
15
Tzanaki I, Agouridis AP, Kostapanos MS. Is there a role of lipidlowering therapies in the management of fatty liver disease[J]? World J Hepatol, 2022, 14(1):119-139.
16
Zhang X, Coker OO, Chu ES, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021, 70(4):761-774.
17
Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine[J]. Immunol Lett, 2018, 196:22-32. doi: 10.1016/j.imlet.2018.01.009.
18
Tian Z, Yang S. Integrating the characteristic genes of macrophage pseudotime analysis in single-cell RNA-seq to construct a prediction model of atherosclerosis[J]. Aging (Albany NY), 2023, 15(13):6361-6379.
19
Rajamannan NM, Subramaniam M, Springett M, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve[J]. Circulation, 2002,105(22):2660-2665.
20
Bustos C, Hernández-Presa MA, Ortego M, et al. HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis[J]. J Am Coll Cardiol, 1998, 32(7):2057-2064.
21
孟子行,李艳国,戎浩,等.scRNA-seq 与scATAC-seq 数据整合分析方法及其在生物医学中的应用[J].中国细胞生物学学报, 2024,46(11):1985-1996.
22
Cai Y, Dai Y, Wang Y, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis[J]. EBioMedicine,2020, 53:102686. doi: 10.1016/j.ebiom.2020.102686.
23
Li Y, Jia Z, Liu X, et al.Single-cell sequencing technology to characterize stem T-cell subpopulations in acute T-lymphoblastic leukemia and the role of stem T-cells in the disease process[J]. Aging(Albany NY), 2024, 16(20):13117-13131.
24
Wu H, Dong J, Yu H, et al.Single-ell RNA and ATAC sequencing reveal hemodialysis-related immune dysregulation of circulating immune cell subpopulations[J]. Front Immunol, 2022, 13:878226. doi: 10.3389/fimmu.2022.878226.
25
Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment[J]. Am J Hematol, 2019,94(5):604-616.
26
Pavlasova G, Mraz M. The regulation and function of CD20: an"enigma" of B-cell biology and targeted therapy[J]. Haematologica,2020, 105(6):1494-1506.
27
Li C, Guan R, Li W, et al. Single-cell RNA sequencing reveals tumor immune microenvironment in human hypopharygeal squamous cell carcinoma and lymphatic metastasis[J]. Front Immunol, 2023,14:1168191. doi: 10.3389/fimmu.2023.1168191.
28
Chen Y, Ouyang Y, Li Z, et al. S100A8 and S100A9 in Cancer[J].Biochim Biophys Acta Rev Cancer, 2023, 1878(3):188891. doi:10.1016/j.bbcan.2023.188891.
29
Alam J, Yazdanpanah G, Ratnapriya R, et al. Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes[J]. Mucosal Immunol, 2022, 15(4):620-628.
30
Murray PJ. Macrophage Polarization[J]. Annu Rev Physiol, 2017,79:541-566.
31
Zhu S, Cheng Q, Zou M, et al.Combining bulk and scRNA-seq to explore the molecular mechanisms governing the distinct efferocytosis activities of a macrophage subpopulation in PDAC[J]. J Cell Mol Med,2024, 28(7):e18266. doi: 10.1111/jcmm.18266.
32
Sanchez-Moral L, Paul T, Martori C, et al. Macrophage CD5L is a target for cancer immunotherapy[J]. EBioMedicine, 2023, 91:104555.doi: 10.1016/j.ebiom.2023.104555.
33
Bonnardel J, T'Jonck W, Gaublomme D, etal. Stellate ells, hepatocytes,and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche[J]. Immunity, 2019, 51(4):638-654.e9.
34
Lee MF, Wang NM, Chu YW, et al. The anti-inflammatory effect of Lactococcus lactis-Ling-Zhi 8 on ameliorating atherosclerosis and nonalcoholic fatty liver in high-fat diet rabbits[J]. Int J Mol Sci, 2024,25(20):11278. doi: 10.3390/ijms252011278.
35
Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12:803037. doi: 10.3389/fimmu.2021.803037.
36
Cheng C, Chen W, Jin H, et al. A review of single-cell RNA-Seq annotation, integration, and cell-cell communication[J]. Cells, 2023,12(15):1970. doi: 10.3390/cells12151970.
37
Yan M, Man S, Ma L, et al. Immunological mechanisms in steatotic liver diseases: an overview and clinical perspectives[J]. Clin Mol Hepatol, 2024, 30(4):620-648.
38
Liu L, Guo H, Song A, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways[J]. BMC Immunol, 2020, 21(1):32. doi: 10.1186/s12865-020-00355-y.
39
Chen XX, Tang L, Fu YM, et al. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-toll-like receptor-4 signaling in alveolar macrophages[J]. Int J Mol Med, 2017, 40(6):1921-1931.
40
Gong J, Li J, Dong H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and Myd88[J]. BMC Complement Altern Med, 2019, 19(1):314. doi: 10.1186/s12906-019-2710-6.
41
Lu H, Wu L, Liu L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization[J]. Biochem Pharmacol, 2018, 154:203-212.
42
Gu X, Zhang Y, Li D, et al. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation[J]. Cell Signal, 2020,69:109553. doi: 10.1016/j.cellsig.2020.109553.
[1] 马尧, 杨明义, 许珂, 郝博, 许鹏. 细胞焦亡与类风湿性关节炎的相关研究进展[J/OL]. 中华关节外科杂志(电子版), 2022, 16(05): 586-591.
[2] 李兴, 李震, 肖方骏, 翁家贤, 潘建科, 何沛恒, 苏海涛. 微小RNA-27b-3p与基质金属蛋白酶13在人软骨细胞的对应关系[J/OL]. 中华关节外科杂志(电子版), 2022, 16(04): 431-440.
[3] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[4] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[5] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[6] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J/OL]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[7] 刘洪千, 马琦, 陈娟娟, 王成军, 武玲玲, 冯喜英. miR-150-5p 在青海地区结核分枝杆菌感染患者血清中的表达及意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 42-47.
[8] 梁丽斯, 李洁, 贺帅, 来艳君, 刘铭, 张琳. MMP-9、MMP-2 及TLR4、HE4对非小细胞肺癌早期诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 756-761.
[9] 徐纪文, 徐静雅, 宗斌, 马爽. COPD并发肺部感染TLR4/NF-κB通路与细胞因子水平及意义[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(02): 221-223.
[10] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[11] 李月华, 曹爽. 慢病毒介导的c-Myc启动子结合蛋白1过表达对结肠癌HCT116细胞增殖与凋亡的影响及其机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(01): 32-36.
[12] 邓毕华, 陈晓峰. 干扰FSCN1基因表达对前列腺癌细胞凋亡、活性氧水平影响的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(01): 1-6.
[13] 雷豆豆, 何浩强, 商怡丰, 郑立, 高明. 芒果苷对骨关节炎的潜在治疗机制:通过抑制巨噬细胞NF-κB调节巨噬细胞M2极化[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(01): 33-38.
[14] 刘志勇, 任德启, 郭健, 赵彦青, 杨明辉, 李锋森, 成家宏. 基于TLR4/NF-κB通路探究益气活血清热解毒方对动脉粥样硬化模型大鼠的干预效果[J/OL]. 中华临床医师杂志(电子版), 2022, 16(04): 349-355.
[15] 姜帅宇, 刘越, 路晓光. 高脂饲喂调控自噬对肠黏膜屏障应激能力的影响[J/OL]. 中华卫生应急电子杂志, 2024, 10(06): 359-367.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?