切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 157 -166. doi: 10.3877/cma.j.issn.2095-1221.2025.03.004

论著

ZEB1 通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭
柳凯1, 李向各1,(), 王成1, 汤润1   
  1. 1. 215129 苏州,江苏省苏州高新区人民医院泌尿外科
  • 收稿日期:2025-01-03 出版日期:2025-06-01
  • 通信作者: 李向各

ZEB1 promotes the proliferation, migration and invasion of prostate cancer cells by regulating Wnt/β-catenin signaling pathway

Kai Liu1, Xiangge Li1,(), Cheng Wang1, Run Tang1   

  1. 1. Department of Urology, the People's Hospital of Suzhou New District, Suzhou 215129, China
  • Received:2025-01-03 Published:2025-06-01
  • Corresponding author: Xiangge Li
引用本文:

柳凯, 李向各, 王成, 汤润. ZEB1 通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 157-166.

Kai Liu, Xiangge Li, Cheng Wang, Run Tang. ZEB1 promotes the proliferation, migration and invasion of prostate cancer cells by regulating Wnt/β-catenin signaling pathway[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(03): 157-166.

目的

探究锌指E-盒结合同源盒1 (ZEB1)是否通过调控Wnt/β-catenin 信号通路促进前列腺癌细胞增殖、迁移和侵袭。

方法

向前列腺癌细胞PC-3、LNCaP 中转染siZEB1和Wnt3a 过表达质粒,依次分为对照,siZEB1 组和siZEB1+OE-Wnt3a 组。实时荧光定量聚合酶链式反应 (RT-qPCR)检测人正常前列腺上皮细胞RWPE1 和前列腺癌细胞PC-3、LNCaP 中ZEB1、Wnt3a、β-catenin、c-Myc、Cyclin D1、E-cadherin 及N-cadherin mRNA 表达量;Western blot 检测前列腺癌细胞PC-3、LNCaP 中Wnt3a、β-catenin、c-Myc、Cyclin D1、E-cadherin 及N-cadherin 蛋白的含量;CCK-8 实验以及平板克隆实验检测不同分组处理后的前列腺癌细胞增殖变化;划痕实验、侵袭测定 (Transwell) 实验检测不同分组处理后前列腺癌细胞的侵袭与迁移。两组间比较采用独立样本t 检验,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与RWPE1细胞相比,前列腺癌细胞PC-3、LNCaP中ZEB1 mRNA表达 (1.99 ±0.11、1.96 ± 0.13 比1.00 ± 0.05)上调 (P < 0.05)。转染siZEB1 后,与对照比较,siZEB1 组PC-3、LNCaP 细胞活性降低,克隆细胞数目[PC-3 细胞:(21.33 ± 2.05)比 (48.67 ± 3.68)个,LNCaP 细胞:(21.67 ± 2.87)比(47.33 ± 2.05)个]减少,迁移率[(30.67 ± 2.49)%比(48.33 ±2.49)%,(28.33 ± 3.40)%比 (43.00 ± 2.94)%]、侵袭数目[(43.00 ± 3.56)比 (64.00 ± 3.74)个,(42.67 ± 4.50)比 (61.33 ± 2.62)个]降低,凋亡率[(9.63 ± 0.66)% 比(1.25 ± 0.34)%,(9.34 ±0.72)% 比 (1.54 ± 0.42)%]上升 (P 均 < 0.001)。转染siZEB1 后,与对照比较,siZEB1 组PC-3、LNCaP 细胞中Wnt3a、c-Myc、Cyclin D1、N-cadherin 蛋白表达和mRNA 表达、β-catenin蛋白表达下降, E-cadherin 蛋白表达和mRNA 表达上升;同时转染siZEB1 和OE-Wnt3a 后,与siZEB1 组比较,siZEB1+OE-Wnt3a 组Wnt3a、c-Myc、Cyclin D1、E-cadherin、N-cadherin 蛋白表达和mRNA 表达以及β-catenin 蛋白表达部分恢复 (P 均 < 0.05)。同时转染siZEB1 和OE-Wnt3a 后,与siZEB1 组比较,siZEB1+OE-Wnt3a 组中PC-3、LNCaP 细胞活性、克隆细胞数目[PC-3 细胞:(35.67 ± 2.05)比 (18.33 ± 2.87)个,LNCaP 细胞:(31.33 ± 2.52)比 (15.00 ±3.61) 个]、迁移率[(50.67 ± 3.30)%比(43.67 ± 3.68)%,(53.67 ± 3.21)%比 (41.33 ± 5.50)%]、侵袭数目[(35.67 ± 1.24)比 (24.00 ± 2.45)个,(34.33 ± 4.04)比 (22.00 ± 3.00)个]上升,凋亡率[(6.74 ± 0.73)%比(9.75 ± 1.08)%,(8.30 ± 0.47)%比 (11.50 ± 0.56)%]降低 (P 均 < 0.05)。

结论

ZEB1 通过调控Wnt/β-catenin 信号通路,在前列腺癌细胞的增殖、迁移、侵袭和凋亡中发挥重要作用。敲低ZEB1 可抑制前列腺癌细胞的恶性表型,而Wnt3a 的过表达能够部分逆转这种抑制作用。

Objective

To explore whether zinc finger E-box binding homeobox 1 (ZEB1)promotes the proliferation, migration and invasion of prostate cancer cells by regulating the Wnt/β-catenin signaling pathway.

Methods

siZEB1 and Wnt3a overexpression plasmids were transfected into PC-3 and LNCaP prostate cancer cells, and named control group, the siZEB1 group, and the siZEB1+OE-Wnt3a group, respectively. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of ZEB1, Wnt3a, β-catenin,c-Myc, Cyclin D1, E-cadherin, N-cadherin in human normal prostate epithelial cell RWPE- 1 and PC-3, LNCaP prostate cancer cells. Western blot was used to detect the protein contents of Wnt3a,β-catenin, c-Myc, Cyclin D1, E-cadherin and N-cadherin in PC-3 as well as LNCaP prostate cancer cells. Cell counting kit-8 (CCK-8) assay and plate clone assay were used to detect the proliferation changes of prostate cancer cells after different treatments. Scratch assay and Transwell assay were used to detect the invasion and migration ability of prostate cancer cells after different treatments.Independent sample t-test was used for comparison between two groups, one- way ANOVA was used for comparison among multiple groups, and LSD-t test was used for pairwise comparison between groups.

Results

Compared with RWPE1 cells, the expression level of ZEB1 mRNA in prostate cancer cells PC-3 and LNCaP were upregulated [(1.99 ± 0.11), (1.96 ± 0.13) vs (1.00 ± 0.05)](both P < 0.05). Compared with the control group, the viability, the colony numbers [PC-3 cells:(21.33 ± 2.05) vs (48.67 ± 3.68) cells, LNCaP cells: (21.67 ± 2.87) vs (47.33 ± 2.05) cells], the migration rate [PC-3 cells: (30.67 ± 2.49)% vs (48.33 ± 2.49)%, LNCaP cells: (28.33 ± 3.40) %vs (43.00 ± 2.94)%], and the number of invaded cells [PC-3 cells: (43.00 ± 3.56) vs (64.00 ± 3.74)cells, and LNCaP cells: (42.67 ± 4.50) vs (61.33 ± 2.62)cells] were decreased in cells transfected with siZEB1 (all P < 0.05), while the apoptosis rate [PC- 3 cells: (9.63 ± 0.66)% vs (1.25 ± 0.34)%,LNCaP cells: (9.34 ± 0.72)% vs (1.54 ± 0.42)%] were increased (all P < 0.001). Compared with the control group, the expression levels of protein and mRNA of Wnt3a, c-Myc, Cyclin D1, N-cadherin andthe expression of β-catenin protein was down-regulated, while the expression levels of of E-cadherin protein and mRNA in PC-3 and LNCaP cells after transfected with siZEB1 (all P < 0.05),which could be partially restored after co-transfection of siZEB1 and OE- Wnt3a. After co-transfection of siZEB1 and OE-Wnt3a, the viability, the colony number [PC-3 cells: (35.67 ± 2.05) vs (18.33 ±2.87) cells; LNCaP cells: (31.33 ± 2.52) vs (15.00 ± 3.61) cells], the migration rate [PC- 3 cells:(50.67 ± 3.30)% vs (43.67 ± 3.68)%; LNCaP cells: (53.67 ± 3.21)% vs (41.33 ± 5.50)%](all P < 0.05), the invaded cell number [PC-3 cells: (35.67 ± 1.24) vs (24.00 ± 2.45) cells; LNCaP cells: (34.33 ± 4.04) vs (22.00 ± 3.00) cells] (all P < 0.05) were increased, and the apoptosis rate was decreased [PC-3 cells: (6.74 ± 0.73)% vs (9.75 ± 1.08)% ; LNCaP cells: (8.30 ± 0.47)%vs (11.50 ± 0.56)%] (all P < 0.05) in PC-3 and LNCaP cells compared with siZEB1 group.

Conclusion

ZEB1 plays a significant role in the proliferation, migration, invasion, and apoptosis of prostate cancer cells by regulating the Wnt/β-catenin signaling pathway. Knockdown of ZEB1 can significantly inhibit the malignant phenotype of prostate cancer cells, while overexpression of Wnt3a can partially reverse this inhibitory effect.

表1 PCR 引物序列信息
图1 敲低ZEB1 抑制前列腺癌细胞活性和克隆形成能力 注:a 图为RT-qPCR 检测RWPE1、PC-3 及LNCaP 细胞中ZEB1 mRNA 表达含量 (n = 3);b 图为RT-qPCR 检测siZEB1 在前列腺癌细胞PC-3、LNCaP中的转染效率 (n = 3);c 图为平板克隆实验检测,正常视野下观察与对照组比较,ziZEB1 组克隆形成数减少;***P < 0.001
表2 敲低ZEB1 对前列腺癌细胞活性的影响 (± s
图2 光学显微镜下观察敲低ZEB1 后前列腺癌细胞迁移变化 (×100) 注:与对照组比较,ziZEB1 组前列腺癌细胞PC-3、LNCaP 迁移率下降,标尺为200 μm;**P < 0.01
图3 光学显微镜下观察敲低ZEB1 后前列腺癌细胞侵袭能力变化 (×200,结晶紫染色) 注:与对照组比较,ziZEB1 组前列腺癌细胞PC-3、LNCaP 侵袭数量下降,标尺为50 μm;***P < 0.001
图4 流式细胞术检测敲低ZEB1 后对前列腺癌细胞凋亡的影响 注:与对照组比较,ziZEB1 组前列腺癌细胞PC-3、LNCaP 凋亡率增加;***P < 0.001
图5 Western blot 检测前列腺癌细胞PC-3、LNCap 转染siZEB1 及过表达Wnt3a 质粒后Wnt/β-catenin 信号通路的蛋白表达
表3 转染siZEB1 对前列腺癌细胞中Wnt/β-catenin 信号通路蛋白表达的影响 (± s
表4 转染siZEB1 对前列腺癌细胞中Wnt/β-catenin 信号通路mRNA 表达的影响 (± s
图6 正常视野下观察前列腺癌细胞克隆形成数量 (结晶紫染色) 注:与对照组比较,ziZEB1 组克隆形成数减少;与ziZEB1 组比较,siZEB1+OE-Wnt3a 组克隆形成数增加;*P < 0.05,**P < 0.01 ,***P < 0.001
图7 光学显微镜下观察前列腺癌细胞迁移 (×100) 注:与对照组比较,ziZEB1 组细胞迁移率下降;与ziZEB1 组比较,siZEB1+OE-Wnt3a 组细胞迁移率增加;标尺为200 μm;*P < 0.05,**P < 0.01
图8 光学显微镜下观察前列腺癌细胞侵袭 (结晶紫染色,×200) 注:与对照组比较,ziZEB1 组侵袭细胞数量下降;与ziZEB1 组比较,siZEB1+OE-Wnt3a 组侵袭细胞数量增加;标尺为50 μm;*P < 0.05,**P < 0.01,***P < 0.001
图9 流式细胞术检测前列腺癌细胞凋亡 注:与对照组比较,ziZEB1 组细胞凋亡率增加;与ziZEB1 组比较,siZEB1+OE-Wnt3a 组细胞凋亡率下降;*P < 0.05,**P < 0.01,***P < 0.001
表5 过表达Wnt3a 逆转ZEB1 敲低对前列腺癌细胞活性的影响 (± s
1
He Y, Xu W, Xiao YT, et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials[J]. Signal Transduct Target Ther,2022, 7(1):198. doi: 10.1038/s41392-022-01042-7.
2
张慧, 陈华宁, 库德莱迪·库尔班, 等. Wnt/β-catenin 信号通路与癌症发生发展及其免疫治疗[J]. 中国生物工程杂志, 2022,42(1):104-111.
3
Su W, Xu M, Chen X, et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer[J]. Mol Cancer, 2017, 16(1):142. doi:10.1186/s12943-017-0711-y.
4
Qu J, Li M, An J, et al. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling[J]. Int J Oncol, 2015,47(6):2141-2152.
5
Li Y, Kong Y, An M, et al. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway[J].J Exp Clin Cancer Res, 2023, 42(1):191. doi: 10.1186/s13046-023-02757-3.
6
Caramel J, Ligier M, Puisieux A. Pleiotropic roles for ZEB1 in cancer[J]. Cancer Res, 2018, 78(1):30-35.
7
López-Moncada F, Castellón EA, Contreras HR. The transcription factors Zeb1 and snail induce cell malignancy and cancer stem cell phenotype in prostate cells, increasing androgen synthesis capacity and therapy resistance[J]. Adv Exp Med Biol, 2022, 1393:51-64.
8
Song XF, Chang H, Liang Q, et al. ZEB1 promotes prostate cancer proliferation and invasion through ERK1/2 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2017, 21(18):4032-4038.
9
Orellana-Serradell O, Herrera D, Castellon EA, et al. The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines[J]. Asian J Androl, 2018, 20(3):294-299.
10
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-beta signaling during cancer progression[J]. Semin Cancer Biol, 2024,101:1-11.
11
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors[J]. Trends Cancer, 2020, 6(11):942-950.
12
Odero-Marah V, Hawsawi O, Henderson V, et al. Epithelialmesenchymal transition (EMT) and prostate cancer[J]. Adv Exp Med Biol, 2018, 1095:101-110.
13
López-Moncada F, Torres MJ, Lavanderos B, et al. SPARC induces E-cadherin repression and enhances cell migration through integrin αvβ3 and the transcription factor ZEB1 in prostate cancer cell[J]. Int J Mol Sci, 2022, 23(11):5874..doi: 10.3390/ijms23115874.
14
Wu G, Wang J, Chen G, et al. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1)[J]. Am J Transl Res,2017, 9(8):3599-3610.
15
Zhang D, Liu X, Li Y, et al. LINC01189-miR-586-ZEB1 feedback loop regulates breast cancer progression through Wnt/β-catenin signaling pathway[J]. Mol Ther Nucleic Acids, 2021, 25:455-467.
16
Li T, Ren J, Ma J, et al. LINC00702/miR-4652-3p/ZEB1 axis promotes the progression of malignant meningioma through activating Wnt/β-catenin pathway[J]. Biomed Pharmacother, 2019, 113:108718. doi:10.1016/j.biopha.2019.108718. Epub 2019 Mar 5.
17
Li LY, Yang JF, Rong F, et al. ZEB1 serves an oncogenic role in the tumourigenesis of HCC by promoting cell proliferation, migration,and inhibiting apoptosis via Wnt/β-catenin signaling pathway[J]. Acta Pharmacol Sin, 2021, 42(10):1676-1689.
18
Koushyar S, Meniel VS, Phesse TJ, et al. Exploring the wnt pathway as a therapeutic target for prostate cancer[J]. Biomolecules, 2022, 12(2):309. doi: 10.3390/biom12020309.
19
粟薇, 梁建, 刘宇, 等. Wnt3a 在相关肿瘤中的作用[J]. 检验医学与临床, 2024, 21(13):1977-1980, 1984.
20
Brasil da Costa FH, Lewis MS, Truong A, et al. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecanmodified 3D cancer-stroma-macrophage triculture models[J]. PLoS One, 2020, 15(5):e0230354.doi: 10.1371/journal.pone.0230354.eCollection 2020.
[1] 贾昊, 刘兆兴, 李大伟, 李培真, 张泽瑾, 刘力维, 申传安. 高迁移率族蛋白B1 在严重烧伤延迟复苏大鼠肝损伤中的作用[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 241-247.
[2] 管豪, 李小容, 张瑶, 任明针. 不同年龄难治性肺炎支原体肺炎患儿高迁移率族蛋白B1水平差异及对转归的预测价值[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 104-115.
[3] 李欣怡, 杜继明. 基于生物信息学分析验证假尿苷酸合成酶7 对结肠癌肿瘤生物学行为的促进作用[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 157-162.
[4] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[5] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[6] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[7] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[8] 董振阳, 瞿旻, 王燕, 张韻, 高旭. 序贯多学科会诊模式在前列腺癌全程管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 152-158.
[9] 周松, 蒋湘勇, 康海, 杨科, 危安, 唐振华, 李铁求. 超声造影诊断前列腺癌的应用价值:一项荟萃分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 159-166.
[10] 潘永昇, 江杰, 曹栋梁, 季陈, 姜丽丽, 陈建刚, 朱华, 郑兵. 经会阴认知融合靶向穿刺在PI-RADS V2.1评分为五分患者中的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 167-173.
[11] 万颂, 刘璇, 黄源兴, 江文聪, 周宇林, 习明. 胆固醇生物合成相关基因对前列腺癌预后和治疗的意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 205-215.
[12] 罗添龙, 贺情情, 黄海. 泌尿功能障碍慢性病的长期综合管理和持久康复实践[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 21-26.
[13] 王运萍, 郭倩, 李胜男, 高亚娟, 徐佳. 丹酚酸A 通过miR-212-5p/PRR11 通路调控宫颈癌SiHa 细胞恶性生物学行为的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 100-108.
[14] 张铭燊, 胡永威, 陈德盛, 俞浩远, 梁智星, 陈玉涛, 叶林森, 李华, 杨扬. CEBPZOS通过调控肿瘤增殖与迁移促进肝癌进展的机制研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 463-470.
[15] 陈嘉玮, 王培红, 刘一昀, 李泽凯, 王策, 蓝倩倩, 齐虹. 聚偏二氟乙烯对人角膜上皮细胞迁移和增殖作用与机制的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(02): 71-77.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?