切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2025, Vol. 15 ›› Issue (01) : 41 -50. doi: 10.3877/cma.j.issn.2095-1221.2025.01.005

论著

LncRNA NEAT1/miR-129-5p 轴通过调控Wnt/β-catenin 通路活化参与LPS 诱导的肾小管上皮细胞损伤
徐琳1, 姚东升1, 周奕菁2, 黄迪1,()   
  1. 1. 201203 上海中医药大学附属曙光医院肾病科 上海市中医药研究院肾脏病研究所 肝肾疾病病证教育部重点实验室 (上海中医药大学) 上海市中医临床重点实验室(20DZ2272200)
    2. 314000 嘉兴,浙江中医药大学附属嘉兴市中医医院肾病科
  • 收稿日期:2024-07-10 出版日期:2025-02-01
  • 通信作者: 黄迪
  • 基金资助:
    国家自然科学基金(82174289)上海市白玉兰人才计划浦江项目(24PJD112)上海市中医药研究院科技发展项目(24YJS05)

LncRNA NEAT1/miR-129-5p axis was involved in LPS-induced renal tubular epithelial cell injury through regulating Wnt/β-catenin pathway activation

Lin Xu1, Dongsheng Yao1, Yijing Zhou2, Di Huang1,()   

  1. 1. Department of Nephrology,Shuguang Hospital;Institute of Chinese Medicine and Nephrology,Key Laboratory of Liver and Kidney Diseases of the Ministry of Education; Shanghai Key Laboratory of Traditional Chinese Medicine Clinics,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China
    2. Department of Nephrology,Jiaxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Chinese Medicine,Zhejiang 314000,China
  • Received:2024-07-10 Published:2025-02-01
  • Corresponding author: Di Huang
引用本文:

徐琳, 姚东升, 周奕菁, 黄迪. LncRNA NEAT1/miR-129-5p 轴通过调控Wnt/β-catenin 通路活化参与LPS 诱导的肾小管上皮细胞损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 41-50.

Lin Xu, Dongsheng Yao, Yijing Zhou, Di Huang. LncRNA NEAT1/miR-129-5p axis was involved in LPS-induced renal tubular epithelial cell injury through regulating Wnt/β-catenin pathway activation[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2025, 15(01): 41-50.

目的

探究LncRNA NEAT1 (NEAT1)在脂多糖 (LPS)诱导肾小管上皮细胞损伤中的作用及其分子机制。

方法

选择人肾小管上皮细胞HK-2 进行体外培养,不同浓度LPS 处理HK2 细胞。流式细胞术测定不同浓度LPS 处理细胞后的细胞凋亡率。RT-qPCR 和Western blot 法检测细胞NEAT1、miR-129-5p、磷酸化(p-) β-Catenin 和β-Catenin 的表达。实 验分组-1 为mimic NC 组,miR-129-5p mimic 组;miR-NC 组和miR-129-5p inhibitor 组。上 述4 个分组细胞共转染NEAT1-WT 或NEAT1-MUT。采用双荧光素酶报告基因分析并验证上述分组细胞中NEAT1 和miR-129-5p 的直接序列互作和负调控关系。实验分组-2 为空白对照组,si-NC 组和si-NEAT1 组。分别转染si-NC 和si-NEAT1,并检测NEAT1 和miR- 129- 5p 的相对表达水平。细胞完成转染后均处理以1 μg/mL LPS,联合处理24 h,实验分组-3 为LPS组 (1 μg/mL LPS),si- NC+miR-NC 组 (共转染si-NC+miR-NC),si-NEAT1+miR-NC 组 (共转染si- NEAT1+miR- NC),si-NC+miR-129-5p inhibitor 组 (共转染si-NEAT1+miR-NC),si- NEAT1+miR-129-5p inhibitor 组(共转染si-NEAT1+miR-129-5p inhibitor)。CCK-8 和流式细胞术检测细胞活力、细胞周期和细胞凋亡;Western blot 检测细胞Bcl-2、Bax、cleaved caspase-3、β-catenin、p-β-catenin、cyclin D1 和c-myc 蛋白表达。多组间比较采用单因素方差分析,组间两两比较采用Turkey's 检验。

结果

与0 μg/mL LPS 组相比,1 μg/mL LPS 诱导HK-2 后细胞活力[(83.70 ± 1.40)%比(100.00 ± 1.70)%]、miR-129-5p 相对表达水平 (0.81 ± 0.07 比1.00 ± 0.13)、磷酸化(p-)β-catenin 水平 (0.78 ± 0.05 比1.00 ± 0.14)下降,NEAT1 相对表达水平 (1.33 ± 0.12比1.00 ± 0.08)、细胞凋亡率 [(32.80 ± 1.30)%比 (5.20 ± 0.20)%]增高;与mimic NC 组相 比,miR-129-5p mimic 组细胞中miR-129-5p 表达(2.34 ± 0.22 比1.00 ± 0.06)升高,NEAT1- WT 荧光素酶活性(0.36 ± 0.03 比1.00 ± 0.08)降低 (P 均 < 0.05),而NEAT1-MUT 荧光素酶活性差异无统计学意义 (P > 0.05)。与si-NC 组相比,si-NEAT1 组细胞中miR-129-5p 表达(2.18 ±0.24 比1.04 ± 0.13)升高;LPS 处理后,与转染si-NEAT1+miR-NC 组相比,si-NC+miR-129-5p inhibitor 组细胞活力 [(67.30 ± 2.40)%比 (147.80 ±5.60)%]、S 期细胞比例 [(19.50 ± 1.70)%比 (40.60 ±1.60)%]、G2/M 期细胞比例 [(8.30 ± 0.40)%比(20.70 ± 0.07)%]、Bcl-2 蛋白相对表达水平 (0.21 ± 0.04 比1.38 ± 0.14)、p-β-catenin/β-catenin 相对表达水平(0.23 ± 0.03 比 1.51 ±1.10)、cyclin D1 蛋白(0.17 ± 0.02 比0.64 ± 0.08)、c-myc 表达(0.18 ± 0.02 比0.65 ± 0.07)降低,G0/G1 期细胞比例 [(71.20 ± 1.30)%比(43.30 ± 1.90)%]、细胞凋亡率 [(39.50 ± 2.60)%比(7.90 ± 1.10)%]、Bax 蛋白相对表达水平(1.21 ± 0.11 比0.35 ± 0.03)、Cleaved caspase-3 蛋白相对表达水平(1.51 ± 0.11 比0.28 ± 0.02)升高 (P 均 < 0.05)。

结论

LPS 诱导的肾小管上皮细胞损伤可能是通过上调NEAT1/miR-129-5p 信号轴抑制Wnt/β-catenin 通路实现的。

Objective

To investigate the role and mechanisms of LncRNA NEAT1 (NEAT1)on lipopolysaccharide (LPS)-induced renal tubular epithelial cell damage. Methods Human renal tubular epithelial cells HK-2 were cultured in vitro, LPS was used to treat HK-2 cells under different concentrations. Flow cytometry was used to determine the apoptosis rate of cells treated with different concentrations of LPS. The expression of NEAT1, miR-129-5p, phosphorylated (p-) β-Catenin and β-Catenin were detected by RT-qPCR and Western blot. Experimental groups-1 were mimic NC group, miR-129-5p mimic group; miR-NC group, miR-129-5p inhibitor group. The above four groups were co-transfected with NEAT1-WT or NEAT1-MUT. Dual luciferase reporter gene experiment was used to analyze and verify the direct sequence interactions and negative regulatory relationships between NEAT1 and miR-129-5p in the above groups of cells. Experimental group-2 were the blank control group, si-NC group and si-NEAT1 group. si-NC and si-NEAT1 were transfected,respectively. The relative expression levels of NEAT1 and miR-129-5p were detected in the above three groups of cells. Cells were treated with 1 μg/mL LPS after transfection, and co- treated for 24 h. Cells were divided into LPS group (1 μg/mL LPS), si-NC+miR-NC group (co- transfected with si- NC+miR- NC), si- NEAT1+miR-NC group (co-transfected with si-NEAT1+miR- NC),si-NC+miR-129-5p inhibitor group (co-transfected with si-NC+miR-129-5p inhibitor),si- NEAT1+miR-129-5p inhibitor group (co-transfected with si-NEAT1+miR-129-5p inhibitor).CCK-8 and flow cytometry experiment were used to detect cell viability, cell cycle and apoptosis rate; the expression of Bcl-2, Bax, Cleaved caspase-3, β-catenin, p-β-catenin, cyclin D1 and c-myc proteins in cells were detected by Western bot. One-way ANOVA analysis of variances was used for multi-group comparisons, and pairwised comparisons between groups were performed by post hoc Turkey's test. P < 0.05 was considered statistically significant.

Results

Compared with LPS group(0 μg/ mL), the cell viability [(83.70 ± 1.40)% vs (100.00 ± 1.70)%], the relative expression levels of miR-129-5p (0.81 ± 0.07 vs 1.00 ± 0.13), and phosphorylated (p-) β-catenin levels(0.78 ± 0.05 vs 1.00 ± 0.14) of HK-2 cells treated by 1μg/mL LPS was decreased, while the relative expression levels of NEAT1 (1.33 ± 0.12 vs 1.00 ± 0.08) and the apoptosis rate [(32.80 ± 1.30)%vs (5.20 ± 0.20) % ] were increased. Compared with mimic NC group, the expression levels of miR-129-5p was increased (2.34 ± 0.22 vs 1.00 ± 0.06), the luciferase activity of NEAT1-WT was decreased (0.36 ± 0.03 vs 1.00 ± 0.08), the luciferase activity of NEAT1-MUT was no significant difference in the miR-129-5p mimic group. Moreover, compared with the si-NC group, the expression of miR-129-5p in the si-NEAT1 group was higher (2.18 ± 0.24 vs 1.04 ± 0.13). After LPS treatment,compared with si-NEAT1+miR-NC group, cell viability [(67.30 ± 2.40)% vs (147.80 ± 5.60)%],the proportion of S-phase cells [(19.50 ± 1.70)% vs (40.60 ± 1.60)%], the proportion of G2/M phase cells [(8.30 ± 0.40)% vs (20.70 ± 0.07)%], the Bcl-2 protein expression levels (0.21 ± 0.04 vs 1.38 ± 0.14), the ratio of p-β- catenin/ β-catenin expression levels (0.23 ± 0.03 vs 1.51 ± 1.10),the cyclin D1 protein expression levels (0.17 ± 0.02 vs 0.64 ± 0.08), the c-myc protein expression levels (0.18 ± 0.02 vs 0.65 ± 0.07) were decreased in si-NC+miR-129-5p inhibitor group,whilethe proportion of G0/G1 phase cells [(71.20 ± 1.30)% vs (43.30 ± 1.90)%], the cell apoptosis rate[(39.50 ± 2.60)% vs (7.90 ± 1.10)%], the Bax protein expression levels(1.21 ± 0.11 vs 0.35 ±0.03)and the Cleaved caspase-3 protein expression levels were increased(1.51 ± 0.11 vs 0.28 ± 0.02).

Conclusion

LPS- induced renal tubular epithelial cell injury may be achieved by up-regulating the NEAT1/ miR- 129-5p axis to inhibit the Wnt/β-catenin pathway.

表1 引物序列信息
图1 LPS 对NEAT1 和miR-129-5p 表达的影响 注:a 图为CCK-8 检测各组细胞活力;b 图为RT-qPCR 检测各组细胞NEAT1 表达;c 图为RT-qPCR 检测各组细胞miR-129-5p 表达。与0 μg/mL 组比较,*P < 0.05,ns 为差异无统计学意义
图2 LPS 对细胞凋亡率和β-catenin 相对表达水平的影响 注:a 图为流式细胞术检测各组细胞凋亡率 (%)结果;b ~ d 图为Western blot 检测各组细胞磷酸化(p-)β-catenin 和β-catenin 相对表达水平结果。与0 μg/mL 组比较,*P < 0.05,ns 为差异无统计学意义
表2 细胞活力、NEAT1 和miR-129-5p 相对表达水平测定结果 (± s
图3 生物信息学数据库starBase(http://starbase.sysu.edu.cn/)分析NEAT1 和miR-129-5p 间的潜在结合位点
图4 NEAT1 和 miR-129-5p 的直接序列相互作用关系验证 注:a 图为RT-qPCR 检测各组细胞中miR-129-5p 的表达;b 图为荧光素酶报告基因实验检测NEAT1 和miR-129-5p 的靶向结合;c 图为RT-qPCR 检测各组细胞中NEAT1 mRNA 和miR-129-5p 的表达。*P < 0.05,ns 为差异无统计学意义
表3 双荧光素酶报告基因测定结果表 (x± s
表4 NEAT1 和 miR-129-5p 的直接序列相互作用关系测定结果 (x± s
图5 流式细胞术检测各组细胞周期分布
表5 细胞活力和细胞周期分布测定结果(x± s,%)
图6 流式细胞术检测细胞凋亡
图7 Western blot 检测各组细胞Bcl-2、Bax 和cleaved caspase-3 蛋白表达 注:*P < 0.05,ns 为差异无统计学意义
表6 细胞凋亡和凋亡相关蛋白因子表达水平测定结果(± s
图8 Western blot 检测各组细胞p-β-catenin、β-catenin、cyclinD1 和c-myc 蛋白表达 注:a 图为p-β-catenin/β-catenin 相对表达水平结果;b 图为cyclinD1 和c-myc 相对表达水平结果;*P < 0.05,ns 为差异无统计学意义
表7 β-catenin/cyclin D1/c-myc 相对表达水平测定结果(x ± sn = 3)
1
Poston JT, Koyner JL. Sepsis associated acute kidney injury[J]. BMJ,2019, 364(4):k4891-k4901.
2
Ronco C, Bellomo R, Kellum JA. Acute kidney injury[J]. Lancet, 2019,394(10212):1949-1964.
3
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al.Acute kidney injury from sepsis: current concepts, epidemiology,pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96(5):1083-1099.
4
Ren GL, Zhu J, Li J, et al. Noncoding RNAs in acute kidney injury[J].J Cell Physiol, 2019, 234(3):2266-2276.
5
Chen Y, Qiu J, Chen B, et al. Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR- 204 and modulating the NF-κB pathway[J]. Int Immunopharmacol, 2018, 59(3):252-260.
6
Ma T, Li H, Liu H, et al. Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p[J]. Mol Ther, 2022, 30(10):3313-3332. doi:10.1016/j.ymthe.2022.05.019.
7
He J, Ge Q, Lin Z, et al. MiR-129-5p induces cell cycle arrest through modulating HOXC10/Cyclin D1 to inhibit gastric cancer progression[J]. FASEB J, 2020, 34(6):8544-8557.
8
Soni H. Canonical Wnt/beta-catenin signaling network as emerging signaling cascade for therapeutic intervention in chronic renal disease[J]. Curr Drug Targets, 2021, 15(7):472-480.
9
张敬,王燕,侯雅楠,等.益肾化湿颗粒对脓毒症急性肾损伤大鼠肾功能及炎症因子和自噬凋亡相关蛋白的影响[J]. 现代中西医结合杂志, 2021, 30(34):3783-3787+3832.
10
刘鲁倩,陈玲,秦叙青,等.脂联素对脓毒症小鼠心肌损伤的保护作用及其机制[J].安徽医科大学学报, 2022(1):36-40. DOI:10.19405/j.cnki.issn1000-1492.2022.01.008.
11
Zheng C, Zhou Y, Huang Y, et al. Effect of ATM on inflammatory response and autophagy in renal tubular epithelial cells in LPS-induced septic AKI[J]. Exp Ther Med, 2019, 18(6):4707-4717.
12
Choi SW, Kim HW, Nam JW. The small peptide world in long noncoding RNAs[J]. Brief Bioinform, 2019, 20(5):1853-1864.
13
Lu S, Dong L, Jing X, et al. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury[J]. Mitochondrion,2020, 53(3):76-90.
14
Shen J, Zhang J, Jiang X, et al. LncRNA HOX transcript antisense RNA accelerated kidney injury induced by urine-derived sepsis through the miR-22/high mobility group box 1 pathway[J]. Life Sci, 2018,210(3):185-191.
15
Xu Y, Deng W, Zhang W. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223[J]. Biomed Pharmacother, 2018,104(2):509-519.
16
Zhou Y, Wang Y, Li Q, et al. Downregulation of lncRNA NEAT1 alleviates sepsis-induced acute kidney injury [J]. Cent Eur J Immunol,2022, 47(1):8-19.
17
Gao C, Zou X, Chen H, et al. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)relieves sepsis-induced kidney injury and lipopolysaccharide (LPS)-induced inflammation in HK-2 Cells[J]. Med Sci Monit, 2020, 26(5):e921-e936.
18
López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the development of human diseases[J]. Noncoding RNA, 2021, 7(1):17-26.
19
Zhu Y, Hu Y, Cheng X, et al. Elevated miR-129-5p attenuates hepatic fibrosis through the NF-κB signaling pathway via PEG3 in a carbon CCl4 rat model [J]. J Mol Histol, 2021, 20(4):74-86.
20
Ye H, Xu G, Zhang D, et al. The protective effects of the miR-129-5p/keap-1/Nrf2 axis on Ang II-induced cardiomyocyte hypertrophy[J].Ann Transl Med, 2021, 9(2):154-166.
21
Huang X, Hou X, Chuan L, et al. miR-129-5p alleviates LPS- induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway[J]. Int Immunopharmacol, 2020, 89(Pt A):1070-1083.
22
Ma T, Li H, Liu H, et al. Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p[J]. Mol Ther, 2022, 30(10):3313-3332.
23
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates[J]. Dev Cell, 2019, 48(4):429-444.
24
Wang Y, Zhou CJ, Liu Y. Wnt signaling in kidney development and disease[J]. Prog Mol Biol Transl Sci, 2018, 153(8):181-207.
25
Schunk SJ, Floege J, Fliser D, et al. WNT-β-catenin signalling-a versatile player in kidney injury and repair[J]. Nat Rev Nephrol, 2021,17(3):172-184. doi: 10.1038/s41581-020-00343-w.
26
Jiang Z, Zhang Y, Chen X, et al. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2[J]. Cancer Cell Int, 2019, 19(1):271-285.
[1] 乔莉, 赵超, 孙昊, 陈洁, 王军, 张劲松. 参附注射液对脂多糖所致肺泡细胞损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(05): 362-367.
[2] 邓健, 王少华, 陈尊, 邹振庄. Keap1/Nrf2信号通路在脂多糖诱导宫内感染致新生鼠支气管肺发育不良的作用机制[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 665-674.
[3] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[4] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[5] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[6] 曹守青, 来东, 焦启龙, 安哲昆, 李修彬. 免疫细胞在肾脏缺血再灌注损伤修复中的作用研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 45-50.
[7] 梁芳, 刘广申, 徐艳. LncRNA AC130710通过miR-129-5P/WNT4轴促进子宫内膜癌细胞增殖和上皮间质转化[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 206-214.
[8] 岳影星, 杨舟鑫, 卢艳, 严静. 脂多糖调控对大鼠心脏微血管内皮细胞的转录组分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 328-335.
[9] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[10] 陈钰澜, 陈健文, 朱飞, 王田田, 张妍, 刘娇娜, 黄梦杰, 吴玲玲, 陈香美. 紫草素抑制缺血再灌注肾损伤后肾小管细胞的增殖和迁移[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 15-21.
[11] 张紫薇, 卢弘. 脂多糖受体复合体在急性前葡萄膜炎虹膜色素上皮细胞中作用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(03): 167-171.
[12] 邱明宪, 康肖, 王磊. LncRNA NEAT1靶向miR-185-5p调控骨肉瘤的机制研究[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(04): 233-239.
[13] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[14] 苏程程, 马永强, 郎胜坤, 刘斌, 魏路清, 姬文婕. 盐皮质受体对脂多糖诱导的巨噬细胞NOD样受体热蛋白结构域相关蛋白3炎症复合体激活的作用及其机制[J/OL]. 中华临床医师杂志(电子版), 2022, 16(05): 447-451.
[15] 李正达, 张艳兵, 刘茂霞, 李玉芳, 杨新静. 艾司洛尔对脓毒症肠损伤的保护作用及对自噬蛋白AMPK表达水平的影响[J/OL]. 中华卫生应急电子杂志, 2023, 09(02): 90-95.
阅读次数
全文


摘要