切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 351 -357. doi: 10.3877/cma.j.issn.2095-1221.2021.06.005

论著

内皮祖细胞靶向归巢的双模态成像活体示踪研究
陈龙1, 董兵2, 刘晓玲2, 何江2, 余冰波2, 罗丽芳3, 夏文豪2,()   
  1. 1. 510086 深圳,南方医科大学深圳医院国际医学部
    2. 510080 广州,中山大学附属第一医院高血压血管病科;510080 广州,国家卫生健康委员会辅助循环重点实验室
    3. 510080 广州,广东药科大学附属第一医院皮肤性病科
  • 收稿日期:2021-05-25 出版日期:2021-12-01
  • 通信作者: 夏文豪
  • 基金资助:
    国家自然科学基金(81671379,81670226); 广东省自然科学基金(2020A1515011264,2017A030313823)

Dual-modality imaging in vivo tracking for endothelial progenitor cells homing

Long Chen1, Bing Dong2, Xiaolin Liu2, Jiang He2, Bingbo Yu2, Lifang Luo3, Wenhao Xia2,()   

  1. 1. The International Medical Department of Shenzhen Hospital, Southern Medical University, Shenzhen 510086, China
    2. Department of Hypertension and Vascular Disease, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou 510080, China
    3. Department of Dermatology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
  • Received:2021-05-25 Published:2021-12-01
  • Corresponding author: Wenhao Xia
引用本文:

陈龙, 董兵, 刘晓玲, 何江, 余冰波, 罗丽芳, 夏文豪. 内皮祖细胞靶向归巢的双模态成像活体示踪研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 351-357.

Long Chen, Bing Dong, Xiaolin Liu, Jiang He, Bingbo Yu, Lifang Luo, Wenhao Xia. Dual-modality imaging in vivo tracking for endothelial progenitor cells homing[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 351-357.

目的

整合磁共振成像和光学成像的优势,采用双模态成像活体动态观察内皮祖细胞(EPCs)移植后靶向归巢到血管内皮损伤局部的生物学过程。

方法

利用化学法合成负载磁共振显影剂SPIO和近红外染料Cy7.5的PEG-PEI纳米载体建立裸大鼠颈动脉内膜损伤模型,随机分为空载体对照组(PEG-PEI组)和实验组(PEG-PEI-SPIO组),体外分别通过动态光散射实验检测其纳米粒子的粒径、电位,CCK-8实验和Annexin V流式实验检测其细胞毒性;体内借助磁共振成像和活体荧光成像动态观察大鼠EPCs尾静脉移植后靶向归巢到血管内皮损伤局部的过程,两组间比较采用t检验。

结果

动态光散射实验表明:当N/P = 12时,PEG-PEI-SPIO纳米粒子与质粒复合后的粒径为(129.61±1.05)nm,表面电位为2.41 mV;电镜检测结果发现:复合后的纳米粒子呈现形态一致的圆形,SPIO位于复合体系中心,复合体系的粒径在(130.06 ±1.21)nm;CCK-8实验和Annexin V流式实验表明:当N/P = 12时,PEG-PEI组与PEG-PEI-SPIO组纳米载体的增殖毒性和凋亡毒性差异无统计学意义;普鲁士蓝染色显示:PEG-PEI-SPIO纳米粒子可被EPCs吞至细胞质中。活体荧光显像结果显示:Cy7.5标记的EPCs能够在移植后2 d内归巢到血管内皮损伤处(高荧光信号强度);磁共振显像结果显示:SPIO标记的EPCs移植后2 d内到达损伤部位血管内皮下(MRI T2强度下降)。

结论

纳米载体PEG-PEI-SPIO具有很好的质粒复合功能、稳定的形态学特征、低细胞毒性以及良好的活体可视化功能,可有效整合磁共振成像和光学成像在空间分辨率、敏感性、特异性以及定量分析等各方面的优势,活体示踪EPCs在体移植后的靶向归巢过程,对活体评价干细胞移植疗效,优化移植策略提供客观指标和理论指导。

Objective

Integrated magnetic resonance and optical imaging to create dynamically dual-modality imaging to observe the biological process of endothelial progenitor cells (EPCs) homing to the local vascular endothelial injury after transplanted.

Methods

Chemically synthesized PEG-PEI nanocarriers loaded with magnetic resonance imaging agent SPIO and near-infrared dye Cy7.5 were randomly divided into an empty carrier control group (PEG-PEI group) and an experimental group (PEG-PEI-SPIO group) ; The particle size and potential of the nanoparticles were measured by dynamic light scattering experiment in vitro, CCK-8 experiment and Annexin V flow cytometry; A nude rat carotid artery intima injury model was established, and the tail vein of EPCs was dynamically observed by magnetic resonance imaging and intravital fluorescence imaging After transplantation, the process of homing to the local vascular endothelial injury is targeted. t test was used for comparison between two groups.

Results

Dynamic light scattering experiments show that the particle size of PEG-PEI-SPIO nanoparticles is 129.6 nm, and the surface potential is 2.4 mV when N/P = 12; electron microscopy Results show that the composite nanoparticles has circles shape, SPIO is located in the center of the composite system, and the particle size of the composite system is about 130 nm; CCK- 8 experiment and Annexin V flow cytometry experiment show that when N/P = 12, compared to the nanocarrier PEG-PEI control group, the proliferation toxicity and apoptosis toxicity of PEG-PEI-SPIO nanocarriers has no statistic differences; Prussian blue staining shows that PEG-PEI-SPIO nanoparticles can be endothelialized into the cytoplasm. In vivo fluorescence imaging Results showed that Cy7.5-labeled EPCs home to the vascular endothelial injury within 2 days after transplantation (increased fluorescence signal intensity) ; MRI Results showed that SPIO-labeled EPCs reached the sub-endothelium injury location within 2 days after transplantation (the intensity of MRI T2 decreased) .

Conclusion

PEG-PEI nanocarrier can effectively integrate the advantages of magnetic resonance imaging and optical imaging in terms of spatial resolution, sensitivity, specificity, and quantitative analysis. Tracking of EPCs' targeted homing process with nanocarrier can be used for the in vivo evaluation of transplantation effect and optimizing transplantation strategy, which provides objective indicators and theoretical guidance for stem cell therapy.

图1 纳米粒子表征注:a图为纳米粒径随N/P值变化;b图为纳米电位随N/P值变化;c图为在N/P = 12时的纳米粒径分布;d图为纳米电镜下观察粒子,形状规整似圆形,scale bar = 200 nm,红色箭头表示纳米粒子
图2 纳米粒子毒性检测注:a ~ b图为EPCs流式鉴定;c图为不同N/P值下的细胞增殖毒性;d图为不同N/P值下的细胞凋亡毒性,n = 10,*P < 0.05
图3 细胞体外磁共振成像注:a图为MRI T2信号值随不同Fe浓度变化;b图为MRI T2信号值随孵育时间变化;c ~ d图为普鲁士蓝染色检测细胞内纳米Fe含量,Zoom表示左图的局部放大;Scale bar = 20 μm
图4 裸鼠近红外成像注:a图为不同组别处理EPCs移植后,活体荧光信号值随移植后时间变化;b图为不同组别处理EPCs移植2 d后近红外成像代表图;虚线圆圈表示EPCs移植后归巢至颈动脉后所示的荧光信号;n = 5,aP< 0.01
图5 裸鼠磁共振成像注:a图为不同组别处理EPCs移植后,MRI信号值随着移植后时间变化;b图为不同组别处理EPCs移植2d后磁共振成像代表图;虚线圆圈表示EPCs移植后归巢至颈动脉后所示的MRI T2信号;n = 5,aP < 0.05
1
Donato AJ, Morgan RG, Walker AE, et al. Cellular and molecular biology of aging endothelial cells[J]. J Mol Cell Cardiol, 2015, 89(Pt B):122-135.
2
Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis[J]. Circ Res, 2016, 118(4):620-636.
3
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302):964-967.
4
Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy[J]. Trends Mol Med, 2009, 15(4):180-189.
5
Teraa M, Sprengers RW, Schutgens RE, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial[J]. Circulation, 2015, 131(10):851-860.
6
Giannotti G, Doerries C, Mocharla PS, et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction[J]. Hypertension, 2010, 55(6):1389-1397.
7
Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair[J]. Curr Opin Hematol, 2014, 21(3):224-228.
8
Mezzanotte L, van't Root M, Karatas H, et al. In vivo molecular bioluminescence imaging: new tools and applications[J]. Trends Biotechnol, 2017, 35(7):640-652.
9
Lindner JR, Link J. Molecular imaging in drug discovery and development[J]. Circ Cardiovasc Imaging, 2018, 11(2):e005355.doi: 10.1161/CIRCIMAGING.117.005355.
10
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles[J]. Adv Drug Deliv Rev, 2010, 62(11):1052-1063.
11
Rosen CB, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore[J]. Nat Biotechnol, 2014, 32(2):179-181.
12
Frangioni JV. In vivo near-infrared fluorescence imaging[J]. Curr Opin Chem Biol, 2003, 7(5):626-634.
13
Zhu S, Tian R, Antaris AL, et al. Near-infrared-II molecular dyes for cancer imaging and surgery[J]. Adv Mater, 2019, 31(24):e1900321.doi: 10.1002/adma.201900321.
14
Guo Y, Chen W, Wang W, et al. Simultaneous diagnosis and gene therapy of immuno-rejection in rat allogeneic heart transplantation model using a T-cell-targeted theranostic nanosystem[J]. ACS Nano, 2012, 6(12):10646-10657.
15
Yu B, Dong B, He J, et al. Bimodal imaging-visible nanomedicine integrating CXCR4 and VEGFa genes directs synergistic reendothelialization of endothelial progenitor cells[J]. Adv Sci (Weinh), 2020, 7(24):2001657.doi: 10.1002/advs.202001657.
16
Bianconi V, Sahebkar A, Kovanen P, et al. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy[J]. Pharmacol Ther, 2018, 181:156-168.
17
Xia WH, Li J, Su C, et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men[J]. Aging Cell, 2012, 11(1):111-119.
18
Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche[J]. Nat Rev Mol Cell Biol, 2019, 20(5):303-320.
19
Lu L, Wang Y, Zhang F, et al. MRI-Visible siRNA nanomedicine directing neuronal differentiation of neural stem cells in stroke[J], Advanced Functional Materials, 2018, 28(14):1706769.
20
Yao Y, Li Y, Ma G, et al. In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats[J]. Mol Imaging Biol, 2011,13(2):303-313.
[1] 王佳铭, 魏刚, 马震, 王长青, 严时, 刘岩, 李慧. 乳腺癌患者外周血中内皮祖细胞检测的临床意义[J]. 中华乳腺病杂志(电子版), 2018, 12(05): 270-275.
[2] 王刚, 程庆, 张冲, 刘振湘, 白志明. 泌尿外科经腹腹腔镜腹壁穿刺血管损伤的临床分析[J]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(02): 121-124.
[3] 张明逸, 陈以宽. 髂腹股沟区血管解剖特点及腹腔镜下腹股沟疝无张力修补术血管损伤的应对技巧[J]. 中华疝和腹壁外科杂志(电子版), 2020, 14(03): 209-212.
[4] 单毓强, 余盼攀. 腹腔镜胃癌根治术中血管损伤的处理策略[J]. 中华腔镜外科杂志(电子版), 2020, 13(02): 0-0.
[5] 孙莉莉, 李晓强, 张明, 朱健, 黄佃. 非编码RNAs调控内皮祖细胞对静脉血栓的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 181-185.
[6] 李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.
[7] 夏杰, 唐紫萌, 吴向未. E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 343-350.
[8] 魏雪娇, 张洋洋, 朱晓宇, 黄秀, 姜丽丽, 赵丹, 龙梦团, 杜玉君. 从细胞角度探讨毛细血管稀疏与肾间质纤维化[J]. 中华肾病研究电子杂志, 2020, 09(03): 124-126.
[9] 夏园园, 蔡广研. 血管抑素的功能及其在慢性肾脏病中的作用[J]. 中华肾病研究电子杂志, 2017, 06(02): 79-82.
[10] 张瑞, 隆云. 跨肺血管机械能的提出与内涵[J]. 中华重症医学电子杂志, 2020, 06(04): 361-364.
[11] 张瑞, 何怀武, 隆云. 呼吸机相关性肺血管损伤的研究进展[J]. 中华重症医学电子杂志, 2020, 06(01): 100-103.
[12] 田晶, 安毅, 于菲, 褚现明. 血管内皮祖细胞生物学活性与血管内皮祖细胞捕获支架的研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(02): 119-122.
[13] 贺嘉男, 王大帅, 张永裕, 赵逆, 甘海润, 黄伟乐, 郭辉, 庞鹏飞. 腔内技术治疗医源性血管损伤的临床应用[J]. 中华介入放射学电子杂志, 2023, 11(01): 12-18.
[14] 张跃伟, 李长政. 放射性肠炎中微血管损伤机制及与内镜表现的关系[J]. 中华胃肠内镜电子杂志, 2019, 06(02): 86-88.
[15] 马晓瑭, 李婵娣, 李嘉辉, 许小冰. 高表达microRNA-17的内皮祖细胞外泌体对糖尿病缺血性脑卒中的治疗作用[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 263-274.
阅读次数
全文


摘要