切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (06) : 343 -350. doi: 10.3877/cma.j.issn.2095-1221.2021.06.004

论著

E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究
夏杰1, 唐紫萌2, 吴向未3,()   
  1. 1. 725000 安康,陕西省安康市中心医院普外科;832000 石河子,新疆石河子大学医学院
    2. 725000 安康,陕西省安康市中医医院检验科
    3. 832000 石河子,新疆石河子大学医学院
  • 收稿日期:2021-04-08 出版日期:2021-12-01
  • 通信作者: 吴向未
  • 基金资助:
    国家自然科学基金(81760570); 安康市科学技术研究发展指导计划项目(AK2020-SFZC-14)

Study on the adhesion of E-cadherin between endothelial progenitor cells and bone marrow mesenchymal stem cells

Jie Xia1, Zimeng Tang2, Xiangwei Wu3,()   

  1. 1. Department of General Surgery, Ankang Central Hospital, Ankang, Shaanxi 725000, China; School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
    2. Department of laboratory medicine, Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi 725000, China
    3. School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
  • Received:2021-04-08 Published:2021-12-01
  • Corresponding author: Xiangwei Wu
引用本文:

夏杰, 唐紫萌, 吴向未. E-钙黏蛋白对血管内皮祖细胞和骨髓间充质干细胞之间的黏附作用研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 343-350.

Jie Xia, Zimeng Tang, Xiangwei Wu. Study on the adhesion of E-cadherin between endothelial progenitor cells and bone marrow mesenchymal stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(06): 343-350.

目的

初步探讨E-钙黏蛋白(E-cad)在内皮祖细胞(EPCs)和间充质干细胞(MSCs)之间的黏附作用。

方法

体外C57BL/6J小鼠骨髓腔分离培养EPCs和MSCs,使用Mito Tracker Red标记EPCs,DAPI标记MSCs;采用免疫荧光的方法观察E-cad在细胞内的表达情况;细胞黏附实验观察EPCs与MSCs体外黏附现象;使用E-cad siRNA干扰EPCs和MSCs中E-cad的表达,RT-qPCR和Western blot检测siRNA转染效率;转染成功后在成血管的凝胶上进一步观察二者黏附现象。多组间比较采用单因素方差分析,组间两两比较使用LSD-t检验。

结果

(1)与MSCs、EPCs比较,体外共培养MSCs和EPCs上清液中E-cad表达(378.26±34.47、564.72±41.58比1087.28±101.92)升高,差异均具有统计学意义(P < 0.05);(2)与Control-siRNA、Mock、Negative相比,E-cad siRNA转染MSCs 48 h后E-cad mRNA表达(0.97±0.07、0.93±0.06、1.00±0.03比0.30±0.05)、E-cad蛋白表达(252.19±11.62、223.70±13.66、257.50±12.08比31.74±4.08)均降低,差异有统计学意义(P < 0.05);与Control-siRNA、Mock、Negative比较,E-cad siRNA转染EPCs 48 h后E-cad mRNA表达(0.93 ±0.07、0.88±0.08、1.00±0.02比0.36±0.07)、E-cad蛋白表达(429.46±31.87、409.13±26.97、436.80±34.69比54.03±15.05)均降低,差异有统计学意义(P < 0.05);(3)E-cad siRNA成功转染MSCs和EPCs后,二者黏附现象受到抑制;(4)沉默EPCs和MSCs的E-cad后,二者在成血管凝胶上的黏附及成管现象均受到抑制。

结论

E-cad介导EPCs和MSCs之间的黏附。

Objective

To explore the adhesion of E-cadherin (E-cad) between endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) .

Methods

EPCs and MSCs were isolated and cultured from the bone marrow cavity of C57BL/6Jmice. Use Mito Tracker Red to label EPCs and DAPI to label MSCs. Immunofluorescence was used to examine the E-cad expression of the two cell lines. Cell adhesion assay was used to observe the adhesion of EPCs and MSCs in vitro. E-cad expression in EPCs and MSCs was silenced using E-cad siRNA, and siRNA transfection efficiency was determined by RT qPCR and Western blot. After successful transfection, the adhesion of EPCs and MSCs on the angiogenic Matrigel was observed. One way ANOVA was used for comparison between multiple groups, and LSD-t test was used for pairwise comparison between groups.

Results

(1) Compared with MSCs or EPCs, the expression of E-cad in the supernatant of the co-cultured of MSCs and EPCs in vitro (378.26±34.47, 564.72±41.58 vs 1087.28±101.92) was increased, the difference was statistically significant (P < 0.05) . (2) Compared with Control-siRNA, Mock and Negative, the expression of E-cad mRNA (0.97±0.07, 0.93±0.06, 1.00±0.03 vs 0.30±0.05) and E-cad protein (252.19 ±11.62, 223.70±13.66, 257.50±12.08 vs 31.74±4.08) of MSCs transfected with siRNA for 48 hours were decreased, the difference was statistically significant (P < 0.05) ; Compared with Control-siRNA, Mock and Negative, the expression of E-cad mRNA (0.93 ±0.07、0.88±0.08、1.00±0.02 vs 0.36±0.07) and E-cad protein (429.46±31.87、409.13±26.97、436.80±34.69 vs 54.03±15.05) of EPCs transfected with siRNA for 48 hours were decreased, the difference was statistically significant (P < 0.05) . (3) The adhesion of MSCs and EPCs were significantly inhibited after successful transfection of E-cad siRNA. (4) Adhesion and tube formation were significantly inhibited in the angiogenic Matrigel after E-cad of EPCs and MSCs was silenced.

Conclusions

E-cad could mediate the adhesion between EPCs and MSCs.

表1 引物序列信息
图1 荧光显微镜下观察体外培养MSCs和EPCs时E-cad的表达(×400)注:a图为MSCs的E-cad表达的荧光图像;b图为EPCs的E-cad表达的荧光图像;c图为体外共培养MSCs和EPCs时E-cad表达的荧光强度和亮度较a和b明显增加;d图为Elisa量化全部的免疫荧光结果定量统计图;aP < 0.05
图2 E-cad siRNA转染MSCs和EPCs后E-cad mRNA表达注:aP < 0.05,ns为差异无统计学意义
图3 E-cad siRNA转染MSCs和EPCs后E-cad蛋白的表达注:a、b图为MSCs各组的E-cad蛋白表达;c、d图为EPCs各组的E-cad蛋白表达;aP < 0.05,ns为差异无统计学意义
图4 DAPI标记的MSCs和未标记的EPCs体外共培养时黏附现象观察(×400)注:a ~ c图为正常细胞;d ~ f图为E-cad siRNA转染的细胞;g ~ i图为Control-siRNA转染的细胞;a、d、g图为DAPI标记MSCs的荧光图像;b、e、h图为MSCs和EPCs的E-cad表达的荧光图像;c图为a和b的融合;f:d和e的融合;i:g和h的融合;红色箭头指示未标记的EPCs;白色箭头指示DAPI标记的MSCs
图5 Mito Tracker Red标记的EPCs和DAPI标记的MSCs在成血管凝胶上的黏附现象观察(×400)注:a、d、g图为Mito Tracker Red标记的EPCs的荧光图像;b、e、h图为DAPI标记的MSCs的荧光图像;c图为a和b的融合;f图为d和e的融合;i图为g和h的融合;a ~ c图为正常的细胞;d ~ f图为E-cad siRNA转染的细胞;g ~ i图为Control-siRNA转染的细胞
1
冯文磊,张猛,印双红, 等. 改良差时贴壁法分离培养鉴定小鼠骨髓间充质干细胞和内皮前体细胞[J]. 解剖学报, 2015, 46(02):282-288.
2
夏杰. E-钙粘蛋白在内皮祖细胞和间充质干细胞之间的粘附作用及机制研究[D]. 石河子大学, 2016.
3
张猛,冯文磊,王艳杰, 等. 全骨髓贴壁法分离培养小鼠骨髓间充质干细胞[J]. 石河子大学学报(自然科学版), 2015, 33(02):164-167.
4
Wu X, Pang L, Lei W, et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling[J]. Cell Stem Cell, 2010, 7(5):571-580.
5
冯文磊,张猛,徐芳洁, 等. 共培养体系间充质干细胞对同源内皮祖细胞增殖和血管形成的影响[J]. 医学研究生学报, 2015, 28(03):229-235.
6
Cao X, Wu X, Frassica D, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells[J]. Proc Natl Acad Sci U S A, 2011, 108(4):1609-1614.
7
Zhang H, Xian L, Lin Z, et al. Endothelial progenitor cells as a possible component of stem cell niche to promote self-renewal of mesenchymal stem cells[J]. Mol Cell Biochem, 2014, 397(1-2):235-243.
8
Qiu XM, Wang L, Gui YY, et al. BSNXD modulates mesenchymal stem cell differentiation into osteoblasts in a postmenopausal osteoporotic mouse model[J]. Int J Clin Exp Pathol, 2015, 8(5):4408-4417.
9
Tu CL, You M. Obligatory roles of filamin A in E-cadherin-mediated cell-cell adhesion in epidermal keratinocytes[J]. J Dermatol Sci, 2014, 73(2):142-151.
10
Pannekoek WJ, de Rooij J, Gloerich M. Force transduction by cadherin adhesions in morphogenesis[J]. F1000Res, 2019, 8:F1000 Faculty Rev-1044. doi: 10.12688/f1000research.18779.1.
11
刘联. E-钙粘素介导的细胞黏附对卵巢癌细胞表皮生长因子受体(EGFR)的激活及其信号转导[D]. 山东大学, 2006.
12
Xia J, Zhang H, Gao X, et al. E-cadherin-mediated contact of endothelial progenitor cells with mesenchymal stem cells through β-catenin signaling[J]. Cell Biol Int, 2016, 40(4):407-418.
13
Abe-Yutori M, Chikazawa T, Shibasaki K, et al. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function[J]. J Periodontal Res, 2017, 52(1):42-50.
14
Quan J, Du Q, Hou Y, et al. Utilization of E-cadherin by monocytes from tumour cells plays key roles in the progression of bone invasion by oral squamous cell carcinoma[J]. Oncol Rep, 2017, 38(2):850-858.
15
Wudebwe UN, Bannerman A, Goldberg-Oppenheimer P, et al. Exploiting cell-mediated contraction and adhesion to structure tissues in vitro[J]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1661):20140200. doi: 10.1098/rstb.2014.0200.
16
郭军,夏杰,张宏伟, 等. 细胞间黏附分子-1在MSC和EPC间黏附作用的研究[J]. 中国实验血液学杂志, 2016, 24(01):211-216.
17
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens[J]. Immunology, 2018, 155(2):186-201.
18
Bulgakova NA, Klapholz B, Brown NH. Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development[J]. Curr Opin Cell Biol, 2012, 24(5):702-712.
19
Liu Wusheng, Fu Xiaogang, Li Rumei. CNN1 regulates the DKK1/Wnt/β-catenin/c-myc signaling pathway by activating TIMP2 to inhibit the invasion, migration and EMT of lung squamous cell carcinoma cells[J]. Exp Ther Med, 2021, 22(2)855. doi: 10.3892/etm.2021.10287.
20
张宏伟. 血管内皮前体细胞对骨髓间充质干细胞干性功能的影响[D]. 华中科技大学, 2015.
21
Ahn SY. The Role of MSCs in the Tumor microenvironment and tumor progression[J]. Anticancer Res, 2020, 40(6):3039-3047.
22
Maqsood M, Kang M, Wu X, et al. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine[J]. Life Sci, 2020, 256:118002.doi: 10.1016/j.lfs.2020.118002.
23
Fu J, Wang Y, Jiang Y, et al. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis[J]. Stem Cell Res Ther, 2021, 12(1):377.
24
Nakamura Y, Kita S, Tanaka Y, et al. Adiponectin stimulates exosome release to enhance mesenchymal Stem-Cell-Driven therapy of heart failure in mice[J]. Mol Ther, 2020, 28(10):2203-2219.
25
Peng Y, Chen B, Zhao J, et al. Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice[J]. Biomed Pharmacother, 2019, 111:624-630.
26
Hou J, Peng X, Wang J, et al. Mesenchymal stem cells promote endothelial progenitor cell proliferation by secreting insulin-like growth factor-1[J]. Mol Med Rep, 2017, 16(2):1502-1508.
27
Ge Q, Zhang H, Hou J, et al. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms[J]. Mol Med Rep, 2018, 17(1):1667-1675.
28
Guo J, Zhang H, Xia J, et al. Interleukin-1β induces intercellular adhesion molecule-1 expression, thus enhancing the adhesion between mesenchymal stem cells and endothelial progenitor cells via the p38 MAPK signaling pathway[J]. Int J Mol Med, 2018, 41(4):1976-1982.
29
Wang X, Zhao Z, Zhang H, et al. Simultaneous isolation of mesenchymal stem cells and endothelial progenitor cells derived from murine bone marrow[J]. Exp Ther Med, 2018, 16(6):5171-5177.
[1] 刘亚利, 陈雪松. 细胞骨架在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(04): 235-237.
[2] 于秀章, 郄明蓉, 侯敏敏. 子宫内膜异位症与干细胞研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(02): 132-137.
[3] 高雪松, 刘慧慧, 张习巨. 经支气管针吸活检细胞黏附分子CD56、甲状腺转录因子-1水平与肺癌组织分型关系分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 873-875.
[4] 孔菲, 王研, 吴昱华. 比阿培南联合莫西沙星对重症肺炎患者疗效、炎性因子及血清CD40L、VACM-1的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 533-535.
[5] 邱壮光, 韦雪梅, 唐瑜, 徐志新. 氟比洛芬酯对肺癌围手术期患者氧化应激及血清VCAM-1、IMA的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 53-57.
[6] 常滋毓. 血清CD40L、VCAM-1及炎性因子在支气管哮喘合并肺炎支原体感染患儿中的表达及预后意义[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 493-495.
[7] 宋斯迪, 鲁曦, 金发光, 梁源, 鱼高乐. SDF-1α/CXCR4信号促进骨髓间充质干细胞对海水吸入性肺损伤的治疗作用[J]. 中华肺部疾病杂志(电子版), 2019, 12(01): 28-33.
[8] 周艳群, 陈鹏, 刘增慧, 毛晶晶, 黎耀和. 多发性骨髓瘤患者骨髓间充质干细胞衰老关键基因和通路的生物信息学分析与验证[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 274-281.
[9] 刘一栋, 贾玉凤, 王燕, 刘扬, 宁金月. 大豆异黄酮上调Wnt-1基因表达促进骨髓间充质干细胞增殖和成骨分化的研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 292-297.
[10] 李应明, 陈华, 伍燕. K562来源的外泌体对骨髓间充质干细胞造血和成骨基因表达的影响[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 207-214.
[11] 钱道海, 宋国栋, 张洲, 马志龙, 王冠男, 于文建, 陈鹏, 王小明. 骨髓间充质干细胞对重症急性胰腺炎胰腺组织修复的促进作用研究[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(06): 351-357.
[12] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[13] 张伟丽, 罗敏, 彭江, 赵斌. BMP-2/Smads信号通路促进骨代谢失衡大鼠骨髓间充质干细胞的成骨分化[J]. 中华老年骨科与康复电子杂志, 2021, 07(02): 65-72.
[14] 杨辉, 鲁利香, 易健, 易旭. 骨髓间充质干细胞及补脑Ⅰ号处理后血清对小鼠海马神经元缺氧缺糖模型ICAM-1、NF200表达的影响[J]. 中华临床医师杂志(电子版), 2022, 16(01): 100-106.
[15] 张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J]. 中华临床医师杂志(电子版), 2021, 15(04): 265-271.
阅读次数
全文


摘要