1 |
Dincgez Cakmak B, Dundar B, Ketenci Gencer F, et al. TWEAK and monocyte to HDL ratio as a predictor of metabolic syndrome in patients with polycystic ovary syndrome[J]. Gynecol Endocrinol, 2019, 35(1):66-71.
|
2 |
Liu J, Liu Y, Peng L, et al. TWEAK/Fn14 signals mediate burn wound repair[J]. J Invest Dermatol, 2019, 139(1):224-234.
|
3 |
Di Martino L, Osme A, Kossak-Gupta S, et al. TWEAK/Fn14 is overexpressed in crohn's disease and mediates experimental ileitis by regulating critical innate and adaptive immune pathways[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(3):427-446.
|
4 |
Martínez-Aranda A, Hernández V, Guney E, et al. FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies[J]. Oncotarget, 2015, 6(42):44254-44273.
|
5 |
Cheng H, Xu M, Liu X, et al. TWEAK/Fn14 activation induces keratinocyte proliferation under psoriatic inflammation[J]. Exp Dermatol, 2016, 25(1):32-37.
|
6 |
Xu M, Zhang F, Wang A, et al. Tumor necrosis Factor-Like weak inducer of apoptosis promotes hepatic stellate cells migration via canonical NF-kappa B/MMP9 pathway[J]. PLoS One, 2016, 11(12):e0167658.
|
7 |
Ameri H, Liu H, Liu R, et al. TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2014, 55(2):801-813.
|
8 |
Di Martino L, Dave M, Menghini P, et al. Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis[J]. Cancer Res, 2016, 76(22):6533-6542.
|
9 |
Feltham RL, Moulin M, Vince JE, et al. Tumor necrosis factor(TNF)signaling, but not TWEAK(TNF-like weak inducer of apoptosis)-triggered cIAP1(cellular inhibitor of apoptosis protein 1)degradation, requires cIAP1 RING dimerization and E2 binding[J]. J Biol Chem, 2017, 292(34):14310.
|
10 |
Burkly LC. Regulation of tissue responses: the TWEAK/Fn14 pathway and other TNF/TNFR superfamily members that activate Non-Canonical NFκB signaling[J]. Front Immunol, 2015, 6:92.
|
11 |
Cabal-Hierro L, Artime N, Iglesias J, et al. A TRAF2 binding Independent region of TNFR2 is responsible for TRAF2 depletion and enhancement of cytotoxicity driven by TNFR1[J]. Oncotarget, 2014, 5(1):224-236.
|
12 |
Chen T, Guo ZP, Li L, et al. TWEAK enhances E-selectin and ICAM-1 expression, and May contribute to the development of cutaneous vasculitis[J]. PLoS One, 2013, 8(2):e56830.
|
13 |
Yanagawa T, Sumiyoshi H, Higashi K, et al. Identification of a novel bone marrow Cell-Derived accelerator of fibrotic liver regeneration through mobilization of hepatic progenitor cells in mice[J]. Stem Cells, 2019, 37(1):89-101.
|
14 |
Fu GB, Huang WJ, Zeng M, et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens[J]. Cell Res, 2019, 29(1):8-22.
|
15 |
Fausto N, Campbell JS, Riehle KJ. Liver regeneration[J]. J Hepatol, 2012, 57(3):692-694.
|
16 |
Jakubowski A, Ambrose C, Parr M, et al. TWEAK induces liver progenitor cell proliferation[J]. J Clin Invest, 2005, 115(9):2330-2340.
|
17 |
Karaca G, Swiderska-Syn M, Xie G, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice[J]. PLoS One, 2014, 9(1):e83987.
|
18 |
Tirnitz-Parker JE, Viebahn CS, Jakubowski A, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells[J]. Hepatology, 2010, 52(1):291-302.
|
19 |
Reynolds BA, Weiss S. Generation of neurons andastrocytes from isolated cells of the adult mammalian central nervous system[J].Science, 1992, 255(5052):1707-1710.
|
20 |
Palm T, Hemmer K, Winter J, et al. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1-miRNA feedback loop[J]. Nucleic Acids Res, 2013, 41(6):3699-3712.
|
21 |
Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain[J]. Cold Spring Harb Perspect Biol, 2015, 7(11). pii: a019034.
|
22 |
Vasic V, Barth K, Schmidt MHH. Neurodegeneration and Neuro-Regeneration-Alzheimer's disease and stem cell therapy[J]. Int J Mol Sci, 2019, 20(17). pii: E4272.
|
23 |
Sarawut, Suksuphew, Parinya, et al. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases[J]. World J Stem Cells, 2015, 7(2):502-511.
|
24 |
Tang B, Zhong Z, Qiu Z, et al. Serum soluble TWEAK levels in severe traumatic brain injury and its prognostic significance[J]. Clin Chim Acta, 2019, 495:227-232.
|
25 |
Xiao G, Lyu M, Wang Y, et al. Ginkgo flavonol glycosides or ginkgolides tend to differentially protect myocardial or cerebral Ischemia-Reperfusion injury via regulation of TWEAK-Fn14 signaling in heart and brain[J]. Front Pharmacol, 2019, 10:735.
|
26 |
Scholzke MN, Rottinger A, Murikinati S, et al. TWEAK regulates proliferation and differentiation of adult neural progenitor cells[J]. Mol Cell Neurosci, 2011, 46(1):325-332.
|
27 |
Joanisse S, Nederveen JP, Snijders T, et al. Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization[J]. Gerontology, 2017, 63(1):91-100.
|
28 |
Franco I, Fernandez-Gonzalo R, Vrtačnik P, et al. Healthy skeletal muscle aging:The role of satellite cells, somatic mutations and exercise[J]. Int Rev Cell Mol Biol, 2019, 346:157-200.
|
29 |
Forcina L, Miano C, Pelosi L, et al. An overview about the biology of skeletal muscle satellite cells[J]. Curr Genomics, 2019, 20(1):24-37.
|
30 |
Manetti M, Tani A, Rosa I, et al. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury[J]. Sci Rep, 2019, 9(1): 14515.
|
31 |
Sato S, Ogura Y, Kumar A. TWEAK/Fn14 signaling axis mediates skeletal muscle atrophy and metabolic dysfunction[J]. Front Immunol, 2014, 5:18.
|
32 |
Padrão AI, Figueira AC, Faustino-Rocha AI, et al. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling[J]. Acta Physiol (Oxf), 2017, 219(4):803-813.
|
33 |
Nascimento TL, Conte TC, Rissato TS, et al. Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation[J]. Toxicon, 2019, 167:6-9.
|
34 |
Enwere EK, Lacasse EC, Adam NJ, et al. Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis[J]. Front Immunol, 2014, 5:34.
|
35 |
He WA, Berardi E, Cardillo VM, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia[J]. J Clin Invest, 2013, 123(11):4821-4835.
|
36 |
Straughn AR, Hindi SM, Xiong G, et al. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis[J]. J Mol Cell Biol, 2019, 11(1):53-66.
|
37 |
Enwere EK, Holbrook J, Lejmi-Mrad R, et al. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway[J]. Sci Signal, 2012, 5(246):ra75.
|
38 |
Jiang B, Yan L, Wang X, et al. Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and Quality-Controllable source for therapeutic applications[J]. Stem Cells, 2019, 37(5):572-581.
|
39 |
Yang W, Ma B. A Mini-Review: the therapeutic potential of bone marrow mesenchymal stem cells and relevant signaling cascades[J]. Curr Stem Cell Res Ther, 2019, 14(3):214-218.
|
40 |
Girgenrath M, Weng S, Kostek CA, et al. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration[J]. EMBO J, 2006, 25(24):5826-5839.
|
41 |
于丽, 刘霞, 柯小亮, 等. TWEAK诱导骨髓间充质干细胞增殖作用的初步实验研究[J]. 哈尔滨医科大学学报, 2009, 43(2):126-129.
|
42 |
Vincent C, Findlay DM, Welldon KJ, et al. Pro-inflammatory cytokines TNF-related weakinducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts[J]. J Bone Miner Res, 2009, 24(8):1434-1449.
|
43 |
Alexaki VI, Notas G, Pelekanou V, et al. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and April and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development[J]. J Immunol, 2009, 183(9):5948-5956.
|
44 |
Lei MX, Chuong CM. Aging, alopecia, and stem cells[J]. Science, 2016, 351(6273):559-560.
|
45 |
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches[J]. Nat Med, 2014, 20(8):847-856.
|
46 |
Mathur AN, Zirak B, Boothby IC, et al. Treg-Cell control of a CXCL5-IL-17 inflammatory axis promotes Hair-Follicle-Stem-Cell differentiation during Skin-Barrier repair[J]. Immunity, 2019, 50(3):655-667.e4.
|
47 |
Cheng H, Zhan N, Ding D, et al. HPV type 16 infection switches keratinocytes from apoptotic to proliferative fate under TWEAK/Fn14 interaction[J]. J Invest Dermatol, 2015, 135(10):2427-2436.
|
48 |
Doerner J, Chalmers SA, Friedman A, et al. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light[J]. Exp Dermatol, 2016, 25(12):969-976.
|
49 |
Peng L, Li Q, Wang H, et al. Fn14 deficiency ameliorates psoriasis-like skin disease in a murine model[J]. Cell Death Dis, 2018, 9(8):801.
|
50 |
Liu J, Peng L, Liu Y, et al. Topical TWEAK accelerates healing of experimental burn wounds in mice[J]. Front Pharmacol, 2018, 9:660.
|