切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (01) : 57 -62. doi: 10.3877/cma.j.issn.2095-1221.2020.01.011

所属专题: 文献

综述

TWEAK/Fn14信号调控干细胞增殖与分化的作用与机制
延祝1, 夏育民1,()   
  1. 1. 710004 西安交通大学第二附属医院皮肤科
  • 收稿日期:2019-11-11 出版日期:2020-02-01
  • 通信作者: 夏育民
  • 基金资助:
    国家自然科学基金(81630081)

Role of TWEAK/Fn14 signals in the regulation of proliferation and differentiation of stem cells

Zhu Yan1, Yumin Xia1,()   

  1. 1. Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
  • Received:2019-11-11 Published:2020-02-01
  • Corresponding author: Yumin Xia
  • About author:
    Corresponding author: Xia Yumin, Email:
引用本文:

延祝, 夏育民. TWEAK/Fn14信号调控干细胞增殖与分化的作用与机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(01): 57-62.

Zhu Yan, Yumin Xia. Role of TWEAK/Fn14 signals in the regulation of proliferation and differentiation of stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(01): 57-62.

肿瘤坏死因子样弱凋亡诱导蛋白(TWEAK)是肿瘤坏死因子(TNF)超家族成员,通过作用于唯一受体成纤维细胞生长因子14 (Fn14)调控细胞的增殖、分化和迁移等多种生命活动。近来研究表明,TWEAK/Fn14信号可以作用于多种干细胞,如肝干细胞、神经干细胞和间充质干细胞等,通过影响其增殖与分化的能力,干预组织的修复与再生。对该领域的研究进行综述,将有助于揭示TWEAK/Fn14信号调控干细胞增殖与分化的作用与机制,并为干细胞在疾病发生机制等基础研究、细胞治疗和组织工程等临床医学研究提供新的方向。

Tumor necrosisfactor (TNF) -like weak inducer of apoptosis (TWEAK) is a member of TNF superfamily, which plays an important role in the regulation of cell proliferation, differentiation and migration via its sole receptor, fibroblast growth factor inducible 14 (Fn14) . Recent studies have indicated that TWEAK/Fn14 signals act on a wide variety of stem cells such as hepatic stem cells, neural stem cells and mesenchymal stem cells, which intervene tissue repair and regeneration by affecting the proliferation and differentiation of stem cells. Here we review recent advances in studies, which would conduce to revealing the role of TWEAK/Fn14 signals in regulating stem cells' proliferation and differentiation as well as the mechanisms, and proposing new directions for stem cells in basic researches such as the pathogenesis of some diseases, and clinical researches such as cell therapies and tissue engineering.

图1 Fn14-TRAF2-TNFR信号轴调控细胞增殖与凋亡
表1 TWEAK/Fn14信号对干细胞的调控作用
1
Dincgez Cakmak B, Dundar B, Ketenci Gencer F, et al. TWEAK and monocyte to HDL ratio as a predictor of metabolic syndrome in patients with polycystic ovary syndrome[J]. Gynecol Endocrinol, 2019, 35(1):66-71.
2
Liu J, Liu Y, Peng L, et al. TWEAK/Fn14 signals mediate burn wound repair[J]. J Invest Dermatol, 2019, 139(1):224-234.
3
Di Martino L, Osme A, Kossak-Gupta S, et al. TWEAK/Fn14 is overexpressed in crohn's disease and mediates experimental ileitis by regulating critical innate and adaptive immune pathways[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(3):427-446.
4
Martínez-Aranda A, Hernández V, Guney E, et al. FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies[J]. Oncotarget, 2015, 6(42):44254-44273.
5
Cheng H, Xu M, Liu X, et al. TWEAK/Fn14 activation induces keratinocyte proliferation under psoriatic inflammation[J]. Exp Dermatol, 2016, 25(1):32-37.
6
Xu M, Zhang F, Wang A, et al. Tumor necrosis Factor-Like weak inducer of apoptosis promotes hepatic stellate cells migration via canonical NF-kappa B/MMP9 pathway[J]. PLoS One, 2016, 11(12):e0167658.
7
Ameri H, Liu H, Liu R, et al. TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2014, 55(2):801-813.
8
Di Martino L, Dave M, Menghini P, et al. Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis[J]. Cancer Res, 2016, 76(22):6533-6542.
9
Feltham RL, Moulin M, Vince JE, et al. Tumor necrosis factor(TNF)signaling, but not TWEAK(TNF-like weak inducer of apoptosis)-triggered cIAP1(cellular inhibitor of apoptosis protein 1)degradation, requires cIAP1 RING dimerization and E2 binding[J]. J Biol Chem, 2017, 292(34):14310.
10
Burkly LC. Regulation of tissue responses: the TWEAK/Fn14 pathway and other TNF/TNFR superfamily members that activate Non-Canonical NFκB signaling[J]. Front Immunol, 2015, 6:92.
11
Cabal-Hierro L, Artime N, Iglesias J, et al. A TRAF2 binding Independent region of TNFR2 is responsible for TRAF2 depletion and enhancement of cytotoxicity driven by TNFR1[J]. Oncotarget, 2014, 5(1):224-236.
12
Chen T, Guo ZP, Li L, et al. TWEAK enhances E-selectin and ICAM-1 expression, and May contribute to the development of cutaneous vasculitis[J]. PLoS One, 2013, 8(2):e56830.
13
Yanagawa T, Sumiyoshi H, Higashi K, et al. Identification of a novel bone marrow Cell-Derived accelerator of fibrotic liver regeneration through mobilization of hepatic progenitor cells in mice[J]. Stem Cells, 2019, 37(1):89-101.
14
Fu GB, Huang WJ, Zeng M, et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens[J]. Cell Res, 2019, 29(1):8-22.
15
Fausto N, Campbell JS, Riehle KJ. Liver regeneration[J]. J Hepatol, 2012, 57(3):692-694.
16
Jakubowski A, Ambrose C, Parr M, et al. TWEAK induces liver progenitor cell proliferation[J]. J Clin Invest, 2005, 115(9):2330-2340.
17
Karaca G, Swiderska-Syn M, Xie G, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice[J]. PLoS One, 2014, 9(1):e83987.
18
Tirnitz-Parker JE, Viebahn CS, Jakubowski A, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells[J]. Hepatology, 2010, 52(1):291-302.
19
Reynolds BA, Weiss S. Generation of neurons andastrocytes from isolated cells of the adult mammalian central nervous system[J].Science, 1992, 255(5052):1707-1710.
20
Palm T, Hemmer K, Winter J, et al. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1-miRNA feedback loop[J]. Nucleic Acids Res, 2013, 41(6):3699-3712.
21
Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain[J]. Cold Spring Harb Perspect Biol, 2015, 7(11). pii: a019034.
22
Vasic V, Barth K, Schmidt MHH. Neurodegeneration and Neuro-Regeneration-Alzheimer's disease and stem cell therapy[J]. Int J Mol Sci, 2019, 20(17). pii: E4272.
23
Sarawut, Suksuphew, Parinya, et al. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases[J]. World J Stem Cells, 2015, 7(2):502-511.
24
Tang B, Zhong Z, Qiu Z, et al. Serum soluble TWEAK levels in severe traumatic brain injury and its prognostic significance[J]. Clin Chim Acta, 2019, 495:227-232.
25
Xiao G, Lyu M, Wang Y, et al. Ginkgo flavonol glycosides or ginkgolides tend to differentially protect myocardial or cerebral Ischemia-Reperfusion injury via regulation of TWEAK-Fn14 signaling in heart and brain[J]. Front Pharmacol, 2019, 10:735.
26
Scholzke MN, Rottinger A, Murikinati S, et al. TWEAK regulates proliferation and differentiation of adult neural progenitor cells[J]. Mol Cell Neurosci, 2011, 46(1):325-332.
27
Joanisse S, Nederveen JP, Snijders T, et al. Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization[J]. Gerontology, 2017, 63(1):91-100.
28
Franco I, Fernandez-Gonzalo R, Vrtačnik P, et al. Healthy skeletal muscle aging:The role of satellite cells, somatic mutations and exercise[J]. Int Rev Cell Mol Biol, 2019, 346:157-200.
29
Forcina L, Miano C, Pelosi L, et al. An overview about the biology of skeletal muscle satellite cells[J]. Curr Genomics, 2019, 20(1):24-37.
30
Manetti M, Tani A, Rosa I, et al. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury[J]. Sci Rep, 2019, 9(1): 14515.
31
Sato S, Ogura Y, Kumar A. TWEAK/Fn14 signaling axis mediates skeletal muscle atrophy and metabolic dysfunction[J]. Front Immunol, 2014, 5:18.
32
Padrão AI, Figueira AC, Faustino-Rocha AI, et al. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling[J]. Acta Physiol (Oxf), 2017, 219(4):803-813.
33
Nascimento TL, Conte TC, Rissato TS, et al. Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation[J]. Toxicon, 2019, 167:6-9.
34
Enwere EK, Lacasse EC, Adam NJ, et al. Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis[J]. Front Immunol, 2014, 5:34.
35
He WA, Berardi E, Cardillo VM, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia[J]. J Clin Invest, 2013, 123(11):4821-4835.
36
Straughn AR, Hindi SM, Xiong G, et al. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis[J]. J Mol Cell Biol, 2019, 11(1):53-66.
37
Enwere EK, Holbrook J, Lejmi-Mrad R, et al. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway[J]. Sci Signal, 2012, 5(246):ra75.
38
Jiang B, Yan L, Wang X, et al. Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and Quality-Controllable source for therapeutic applications[J]. Stem Cells, 2019, 37(5):572-581.
39
Yang W, Ma B. A Mini-Review: the therapeutic potential of bone marrow mesenchymal stem cells and relevant signaling cascades[J]. Curr Stem Cell Res Ther, 2019, 14(3):214-218.
40
Girgenrath M, Weng S, Kostek CA, et al. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration[J]. EMBO J, 2006, 25(24):5826-5839.
41
于丽, 刘霞, 柯小亮, 等. TWEAK诱导骨髓间充质干细胞增殖作用的初步实验研究[J]. 哈尔滨医科大学学报, 2009, 43(2):126-129.
42
Vincent C, Findlay DM, Welldon KJ, et al. Pro-inflammatory cytokines TNF-related weakinducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts[J]. J Bone Miner Res, 2009, 24(8):1434-1449.
43
Alexaki VI, Notas G, Pelekanou V, et al. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and April and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development[J]. J Immunol, 2009, 183(9):5948-5956.
44
Lei MX, Chuong CM. Aging, alopecia, and stem cells[J]. Science, 2016, 351(6273):559-560.
45
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches[J]. Nat Med, 2014, 20(8):847-856.
46
Mathur AN, Zirak B, Boothby IC, et al. Treg-Cell control of a CXCL5-IL-17 inflammatory axis promotes Hair-Follicle-Stem-Cell differentiation during Skin-Barrier repair[J]. Immunity, 2019, 50(3):655-667.e4.
47
Cheng H, Zhan N, Ding D, et al. HPV type 16 infection switches keratinocytes from apoptotic to proliferative fate under TWEAK/Fn14 interaction[J]. J Invest Dermatol, 2015, 135(10):2427-2436.
48
Doerner J, Chalmers SA, Friedman A, et al. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light[J]. Exp Dermatol, 2016, 25(12):969-976.
49
Peng L, Li Q, Wang H, et al. Fn14 deficiency ameliorates psoriasis-like skin disease in a murine model[J]. Cell Death Dis, 2018, 9(8):801.
50
Liu J, Peng L, Liu Y, et al. Topical TWEAK accelerates healing of experimental burn wounds in mice[J]. Front Pharmacol, 2018, 9:660.
[1] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[5] 司钦亮, 毕世龙, 焦慧骁, 李世照, 陈哲禹, 武玉东. 精索去分化脂肪肉瘤两例并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 585-590.
[6] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[7] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[8] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[9] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[12] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[13] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[14] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[15] 杨菲, 刘腾飞, 赵志军, 李睿聪, 张颉, 刘妍, 赵珍. 血清维生素水平与分化型甲状腺癌的关联性研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 633-640.
阅读次数
全文


摘要