切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (01) : 57 -62. doi: 10.3877/cma.j.issn.2095-1221.2020.01.011

所属专题: 文献

综述

TWEAK/Fn14信号调控干细胞增殖与分化的作用与机制
延祝1, 夏育民1,()   
  1. 1. 710004 西安交通大学第二附属医院皮肤科
  • 收稿日期:2019-11-11 出版日期:2020-02-01
  • 通信作者: 夏育民
  • 基金资助:
    国家自然科学基金(81630081)

Role of TWEAK/Fn14 signals in the regulation of proliferation and differentiation of stem cells

Zhu Yan1, Yumin Xia1,()   

  1. 1. Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
  • Received:2019-11-11 Published:2020-02-01
  • Corresponding author: Yumin Xia
  • About author:
    Corresponding author: Xia Yumin, Email:
引用本文:

延祝, 夏育民. TWEAK/Fn14信号调控干细胞增殖与分化的作用与机制[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(01): 57-62.

Zhu Yan, Yumin Xia. Role of TWEAK/Fn14 signals in the regulation of proliferation and differentiation of stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(01): 57-62.

肿瘤坏死因子样弱凋亡诱导蛋白(TWEAK)是肿瘤坏死因子(TNF)超家族成员,通过作用于唯一受体成纤维细胞生长因子14 (Fn14)调控细胞的增殖、分化和迁移等多种生命活动。近来研究表明,TWEAK/Fn14信号可以作用于多种干细胞,如肝干细胞、神经干细胞和间充质干细胞等,通过影响其增殖与分化的能力,干预组织的修复与再生。对该领域的研究进行综述,将有助于揭示TWEAK/Fn14信号调控干细胞增殖与分化的作用与机制,并为干细胞在疾病发生机制等基础研究、细胞治疗和组织工程等临床医学研究提供新的方向。

Tumor necrosisfactor (TNF) -like weak inducer of apoptosis (TWEAK) is a member of TNF superfamily, which plays an important role in the regulation of cell proliferation, differentiation and migration via its sole receptor, fibroblast growth factor inducible 14 (Fn14) . Recent studies have indicated that TWEAK/Fn14 signals act on a wide variety of stem cells such as hepatic stem cells, neural stem cells and mesenchymal stem cells, which intervene tissue repair and regeneration by affecting the proliferation and differentiation of stem cells. Here we review recent advances in studies, which would conduce to revealing the role of TWEAK/Fn14 signals in regulating stem cells' proliferation and differentiation as well as the mechanisms, and proposing new directions for stem cells in basic researches such as the pathogenesis of some diseases, and clinical researches such as cell therapies and tissue engineering.

图1 Fn14-TRAF2-TNFR信号轴调控细胞增殖与凋亡
表1 TWEAK/Fn14信号对干细胞的调控作用
1
Dincgez Cakmak B, Dundar B, Ketenci Gencer F, et al. TWEAK and monocyte to HDL ratio as a predictor of metabolic syndrome in patients with polycystic ovary syndrome[J]. Gynecol Endocrinol, 2019, 35(1):66-71.
2
Liu J, Liu Y, Peng L, et al. TWEAK/Fn14 signals mediate burn wound repair[J]. J Invest Dermatol, 2019, 139(1):224-234.
3
Di Martino L, Osme A, Kossak-Gupta S, et al. TWEAK/Fn14 is overexpressed in crohn's disease and mediates experimental ileitis by regulating critical innate and adaptive immune pathways[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(3):427-446.
4
Martínez-Aranda A, Hernández V, Guney E, et al. FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies[J]. Oncotarget, 2015, 6(42):44254-44273.
5
Cheng H, Xu M, Liu X, et al. TWEAK/Fn14 activation induces keratinocyte proliferation under psoriatic inflammation[J]. Exp Dermatol, 2016, 25(1):32-37.
6
Xu M, Zhang F, Wang A, et al. Tumor necrosis Factor-Like weak inducer of apoptosis promotes hepatic stellate cells migration via canonical NF-kappa B/MMP9 pathway[J]. PLoS One, 2016, 11(12):e0167658.
7
Ameri H, Liu H, Liu R, et al. TWEAK/Fn14 pathway is a novel mediator of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2014, 55(2):801-813.
8
Di Martino L, Dave M, Menghini P, et al. Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis[J]. Cancer Res, 2016, 76(22):6533-6542.
9
Feltham RL, Moulin M, Vince JE, et al. Tumor necrosis factor(TNF)signaling, but not TWEAK(TNF-like weak inducer of apoptosis)-triggered cIAP1(cellular inhibitor of apoptosis protein 1)degradation, requires cIAP1 RING dimerization and E2 binding[J]. J Biol Chem, 2017, 292(34):14310.
10
Burkly LC. Regulation of tissue responses: the TWEAK/Fn14 pathway and other TNF/TNFR superfamily members that activate Non-Canonical NFκB signaling[J]. Front Immunol, 2015, 6:92.
11
Cabal-Hierro L, Artime N, Iglesias J, et al. A TRAF2 binding Independent region of TNFR2 is responsible for TRAF2 depletion and enhancement of cytotoxicity driven by TNFR1[J]. Oncotarget, 2014, 5(1):224-236.
12
Chen T, Guo ZP, Li L, et al. TWEAK enhances E-selectin and ICAM-1 expression, and May contribute to the development of cutaneous vasculitis[J]. PLoS One, 2013, 8(2):e56830.
13
Yanagawa T, Sumiyoshi H, Higashi K, et al. Identification of a novel bone marrow Cell-Derived accelerator of fibrotic liver regeneration through mobilization of hepatic progenitor cells in mice[J]. Stem Cells, 2019, 37(1):89-101.
14
Fu GB, Huang WJ, Zeng M, et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens[J]. Cell Res, 2019, 29(1):8-22.
15
Fausto N, Campbell JS, Riehle KJ. Liver regeneration[J]. J Hepatol, 2012, 57(3):692-694.
16
Jakubowski A, Ambrose C, Parr M, et al. TWEAK induces liver progenitor cell proliferation[J]. J Clin Invest, 2005, 115(9):2330-2340.
17
Karaca G, Swiderska-Syn M, Xie G, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice[J]. PLoS One, 2014, 9(1):e83987.
18
Tirnitz-Parker JE, Viebahn CS, Jakubowski A, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells[J]. Hepatology, 2010, 52(1):291-302.
19
Reynolds BA, Weiss S. Generation of neurons andastrocytes from isolated cells of the adult mammalian central nervous system[J].Science, 1992, 255(5052):1707-1710.
20
Palm T, Hemmer K, Winter J, et al. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1-miRNA feedback loop[J]. Nucleic Acids Res, 2013, 41(6):3699-3712.
21
Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain[J]. Cold Spring Harb Perspect Biol, 2015, 7(11). pii: a019034.
22
Vasic V, Barth K, Schmidt MHH. Neurodegeneration and Neuro-Regeneration-Alzheimer's disease and stem cell therapy[J]. Int J Mol Sci, 2019, 20(17). pii: E4272.
23
Sarawut, Suksuphew, Parinya, et al. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases[J]. World J Stem Cells, 2015, 7(2):502-511.
24
Tang B, Zhong Z, Qiu Z, et al. Serum soluble TWEAK levels in severe traumatic brain injury and its prognostic significance[J]. Clin Chim Acta, 2019, 495:227-232.
25
Xiao G, Lyu M, Wang Y, et al. Ginkgo flavonol glycosides or ginkgolides tend to differentially protect myocardial or cerebral Ischemia-Reperfusion injury via regulation of TWEAK-Fn14 signaling in heart and brain[J]. Front Pharmacol, 2019, 10:735.
26
Scholzke MN, Rottinger A, Murikinati S, et al. TWEAK regulates proliferation and differentiation of adult neural progenitor cells[J]. Mol Cell Neurosci, 2011, 46(1):325-332.
27
Joanisse S, Nederveen JP, Snijders T, et al. Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization[J]. Gerontology, 2017, 63(1):91-100.
28
Franco I, Fernandez-Gonzalo R, Vrtačnik P, et al. Healthy skeletal muscle aging:The role of satellite cells, somatic mutations and exercise[J]. Int Rev Cell Mol Biol, 2019, 346:157-200.
29
Forcina L, Miano C, Pelosi L, et al. An overview about the biology of skeletal muscle satellite cells[J]. Curr Genomics, 2019, 20(1):24-37.
30
Manetti M, Tani A, Rosa I, et al. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury[J]. Sci Rep, 2019, 9(1): 14515.
31
Sato S, Ogura Y, Kumar A. TWEAK/Fn14 signaling axis mediates skeletal muscle atrophy and metabolic dysfunction[J]. Front Immunol, 2014, 5:18.
32
Padrão AI, Figueira AC, Faustino-Rocha AI, et al. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling[J]. Acta Physiol (Oxf), 2017, 219(4):803-813.
33
Nascimento TL, Conte TC, Rissato TS, et al. Radicicol enhances the regeneration of skeletal muscle injured by crotoxin via decrease of NF-kB activation[J]. Toxicon, 2019, 167:6-9.
34
Enwere EK, Lacasse EC, Adam NJ, et al. Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis[J]. Front Immunol, 2014, 5:34.
35
He WA, Berardi E, Cardillo VM, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia[J]. J Clin Invest, 2013, 123(11):4821-4835.
36
Straughn AR, Hindi SM, Xiong G, et al. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis[J]. J Mol Cell Biol, 2019, 11(1):53-66.
37
Enwere EK, Holbrook J, Lejmi-Mrad R, et al. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway[J]. Sci Signal, 2012, 5(246):ra75.
38
Jiang B, Yan L, Wang X, et al. Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and Quality-Controllable source for therapeutic applications[J]. Stem Cells, 2019, 37(5):572-581.
39
Yang W, Ma B. A Mini-Review: the therapeutic potential of bone marrow mesenchymal stem cells and relevant signaling cascades[J]. Curr Stem Cell Res Ther, 2019, 14(3):214-218.
40
Girgenrath M, Weng S, Kostek CA, et al. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration[J]. EMBO J, 2006, 25(24):5826-5839.
41
于丽, 刘霞, 柯小亮, 等. TWEAK诱导骨髓间充质干细胞增殖作用的初步实验研究[J]. 哈尔滨医科大学学报, 2009, 43(2):126-129.
42
Vincent C, Findlay DM, Welldon KJ, et al. Pro-inflammatory cytokines TNF-related weakinducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts[J]. J Bone Miner Res, 2009, 24(8):1434-1449.
43
Alexaki VI, Notas G, Pelekanou V, et al. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and April and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development[J]. J Immunol, 2009, 183(9):5948-5956.
44
Lei MX, Chuong CM. Aging, alopecia, and stem cells[J]. Science, 2016, 351(6273):559-560.
45
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches[J]. Nat Med, 2014, 20(8):847-856.
46
Mathur AN, Zirak B, Boothby IC, et al. Treg-Cell control of a CXCL5-IL-17 inflammatory axis promotes Hair-Follicle-Stem-Cell differentiation during Skin-Barrier repair[J]. Immunity, 2019, 50(3):655-667.e4.
47
Cheng H, Zhan N, Ding D, et al. HPV type 16 infection switches keratinocytes from apoptotic to proliferative fate under TWEAK/Fn14 interaction[J]. J Invest Dermatol, 2015, 135(10):2427-2436.
48
Doerner J, Chalmers SA, Friedman A, et al. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light[J]. Exp Dermatol, 2016, 25(12):969-976.
49
Peng L, Li Q, Wang H, et al. Fn14 deficiency ameliorates psoriasis-like skin disease in a murine model[J]. Cell Death Dis, 2018, 9(8):801.
50
Liu J, Peng L, Liu Y, et al. Topical TWEAK accelerates healing of experimental burn wounds in mice[J]. Front Pharmacol, 2018, 9:660.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[5] 郑泽坤, 刘卓恒, 邹浩, 胡会元, 李妲, 吴巍. 扩大根治性手术切除复发性巨大腹膜后去分化脂肪肉瘤1例[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 588-590.
[6] 刘阳阳, 王梁, 戴志红, 郝建戈, 张力仁, 刘志宇. 腹膜后去分化脂肪肉瘤合并左肾透明细胞癌一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 412-414.
[7] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[8] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[9] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[10] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
阅读次数
全文


摘要