切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 282 -291. doi: 10.3877/cma.j.issn.2095-1221.2019.05.005

所属专题: 文献

论著

自剪切多肽P2A对自然杀伤细胞的高效诱导扩增作用的研究
陈雪梅1, 张曦1, 林建炜1, 薛祯智1, 刘韬2,()   
  1. 1. 518000 深圳市默赛尔生物医学科技发展有限公司
    2. 518000 深圳市罗湖区人民医院(深圳大学第三附属医院)肿瘤康复科
  • 收稿日期:2019-07-06 出版日期:2019-10-01
  • 通信作者: 刘韬
  • 基金资助:
    深圳市科技创新委员会资助(GQYCZZ20160531090700)

Application of self-cleaving P2A peptide for the expansion of natural killer cells

Xuemei Chen1, Xi Zhang1, Jianwei Lin1, Zhenzhi Xue1, Tao Liu2,()   

  1. 1. Morecell Biomedical Technology Development Co., Ltd. Shenzhen, Shenzhen 518000, China
    2. Department of Biotherapy and Oncology, Shenzhen Luohu People's Hospital (the 3rd Affiliated Hospital of Shenzhen University) , Shenzhen 518000, China
  • Received:2019-07-06 Published:2019-10-01
  • Corresponding author: Tao Liu
  • About author:
    Corresponding author: Liu Tao, Email:
引用本文:

陈雪梅, 张曦, 林建炜, 薛祯智, 刘韬. 自剪切多肽P2A对自然杀伤细胞的高效诱导扩增作用的研究[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(05): 282-291.

Xuemei Chen, Xi Zhang, Jianwei Lin, Zhenzhi Xue, Tao Liu. Application of self-cleaving P2A peptide for the expansion of natural killer cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2019, 09(05): 282-291.

目的

改进现有过继性人自然杀伤(NK)细胞体外诱导、分化及扩增方法,实现高效定向分化及大量扩增NK细胞的目的。

方法

利用自剪切多肽P2A连接IL-15和4-1BBL基因,通过慢病毒感染和药物筛选的方法制备稳定表达IL-15和4-1BBL的K562滋养层细胞株。该方法可刺激人PBMC细胞向NK细胞分化及高效增殖。实验结果以±s表示并用两样本t检验进行比较。

结果

经该方法培养的CD3- CD16+ 56+ NK细胞增殖倍数达到(4480.43±37.80)倍;CD3- CD16+ 56+ NK细胞纯度达到94.79%;细胞内表达IFN-γ和TNF-α的NK细胞比例为(63.07±3.37)%和(54.85±2.04)%,分别高于对照组(16.28±2.86)%和(14.53±1.15)%(t = 62.25,22.66,P均< 0.01);细胞分泌至培养上清液中的IFN-γ和TNF-α浓度为(111.39±6.95)?pg/ml和(32.76±3.23) pg/ml,分别高于对照组(44.99±4.74)pg/ml和(11.09±2.45)?pg/ml(t = 20.56,7.21,P均< 0.01);在体外,该方法培养的NK细胞对K562细胞的杀伤效率为(78.52±7.36)%,高于对照组(48.53±6.66)%(t = 11.56,P < 0.01);对H520细胞的杀伤效率为(65.03±3.27)%,高于对照组(35.85±3.99)%(t = 11.35,P < 0.01)。

结论

利用自剪切多肽P2A构建稳定高表达的IL-15和4-1BBL的K562滋养层细胞株,从而提高了NK细胞增殖倍数、纯度和细胞毒性。

Objective

The purpose of this study was to improve differentiation and expansion for nature killer cells in vitro using self-cleaving P2A peptide.

Methods

IL-15 and 4-1BBL genes were connected via P2A. Lentiviral vector and drug screening were used to produce K562 feeder cells which were stably expressing IL-15 and 4-1BBL. Subsequently, they were co-cultured with human PBMC as feeder cells for NK cell differentiation and proliferation. The results were expressed as ±s and compared by two-sample t-test.

Results

The fold of CD3-CD16+56+ NK cell expansion was 4480.43+37.80 times in vitro. The proportion of CD3-CD16+56+ NK cells was 94.79%. The percentage of IFN-γ and TNF-α positive NK cells was (63.07±3.37) % and (54.85±2.04) %, respectively, which were higher than that of the control group (16.28±2.86) % and (14.53±1.15) %, (t = 62.25 and t = 22.66 respectively, P < 0.01) . The concentrations of IFN-γ and TNF-α secreted by NK cells were (111.39±6.95) pg/ml and (32.76±3.23) pg/ml, respectively, and higher than that of the control group (44.99±4.74) g/ml and (11.09±2.45) pg/ml, (t = 20.56 and t = 7.21 respectively, P < 0.01) . In vitro, the killing rates of NK cells against K562 and H520 cells were (78.52±7.36) % and (65.03±3.27) %, respectively, which were higher than those of the control group (48.53±6.66) % and (35.85±3.99) %, t = 11.56 and t = 11.35 respectively, P < 0.01) .

Conclusion

We have successfully improved the transmembrane expression of IL-15 and 4-1BBL in K562 feeder cells, and established a better culture method to obtain NK cells from human PBMCs.

图1 pLVX-IL15-41BBL慢病毒表达载体的构建
图2 pLVX-IL15-41BBL质粒转化克隆PCR产物的电泳条带
图3 梯度稀释的ZsGreen1慢病毒感染293T细胞的流式检测
图4 K562细胞内目的蛋白自剪切及跨膜表达
图5 慢病毒感染前后IL15-41BBL+ K562细胞的流式检测
图6 倒置显微镜下观察经滋养层细胞诱导培养16 d后获得的两组自然杀伤细胞(明场,×100)
图7 两组自然杀伤细胞诱导培养16 d的生长曲线
图8 外周血单个核细胞及诱导培养16 d的两组自然杀伤细胞的细胞表型流式检测
图9 CD3- CD56+自然杀伤细胞的增殖倍数比较
图10 两组自然杀伤细胞内γ-干扰素、α-干扰素细胞因子表达的流式散点检测
图11 两组自然杀伤细胞内γ-干扰素、α-干扰素细胞因子表达阳性比例
图12 两组自然杀伤细胞培养上清液中γ-干扰素、α-干扰素细胞因子的流式散点检测
图13 两组自然杀伤细胞培养上清液中γ-干扰素、α-干扰素细胞因子浓度的比较
图14 两组自然杀伤细胞对肿瘤细胞系K562和H520细胞的杀伤比例
[1]
Bordon Y. Tumour immunology:Natural killer cells spy greedy tumours[J]. Nat Rev Immunol, 2018, 18(2):77.
[2]
Qian X, Wang X, Jin H. Cell transfer therapy for cancer: past, present, and future[J]. J Immunol Res, 2014, 2014: 525913.
[3]
Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity?The example of natural killer cells[J]. Science, 2011, 331(6013):44-49.
[4]
Bradley M, Zeytun A, Rafi-Janajreh A, et al. Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas+and Fas-tumor cells[J]. Blood, 1998, 92(11):4248-4255.
[5]
Screpanti V, Wallin RP, Ljunggren HG, et al. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells[J]. J Immunol, 2001, 167(4):2068-2073.
[6]
Kayagaki N, Yamaguchi N, Nakayama M, et al. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells[J]. J Immunol, 1999, 163(4):1906-1913.
[7]
Brehm C, Huenecke S, Esser R, et al. Interleukin-2-stimulated natural killer cells are less susceptible to mycophenolate mofetil than non-activated NK cells: possible Consequences for immunotherapy[J]. Cancer Immunol Immunother, 2014, 63(8):821-833.
[8]
Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions[J]. J Allergy Clin Immunol, 2013, 132(3):536-544.
[9]
Baek HJ, Kim JS, Yoon M, et al. Ex vivo expansion of natural killer cells using cryopreserved irradiated feeder cells[J]. Anticancer Res, 2013, 33(5):2011-2019.
[10]
Becker PS, Suck G, Nowakowska P, et al. Selection and expansion of natural killer cells for NK cell-based immunotherapy[J]. Cancer Immunol Immunother, 2016, 65(4):477-484.
[11]
Klingemann H. Challenges of cancer therapy with natural killer cells[J]. Cytotherapy, 2015, 17(3):245-249.
[12]
Koehl U, Brehm C, Huenecke S, et al. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol [J]. Front Oncol, 2013, 3: 118.
[13]
Romee R, Rosario M, Berrien-Elliott MM, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia[J]. Sci Transl Med, 2016, 8(357): 357ra123.
[14]
Leong JW, Chase JM, Romee R, et al. Preactivation with IL-12, IL-15, and IL-18 Induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells[J]. Biol Blood Marrow Transplant, 2014, 20(4):463-473.
[15]
Kim EK, Ahn YO, Kim S, et al. Ex vivo activation and expansion of natural killer cells from patients with advanced cancer with feeder cells from healthy volunteers [J]. Cytotherapy, 2013, 15 (2): 231-241.
[16]
Jiang B, Wu X, Li XN, et al. Expansion of NK cells by engineered K562 cells co-expressing 4-1BBL and mMICA, combined with soluble IL-21[J]. Cell Immunol, 2014, 290(1):10-20.
[17]
Torelli GF, Rozera C, Santodonato LA, et al. A good manufacturing practice method to ex vivo expand natural killer cells for clinical use[J]. Blood Transfus, 2015, 13(3):464-471.
[18]
Siegler U, Meyer-Monard S, Joerger S, et al. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients[J]. Cytotherapy, 2010, 12(6):750-763.
[19]
Zhao XY, Qi H, Zhou JM, et al. Treatment with recombinant interleukin-15 (IL-15) increases the number of t cells and natural killer (NK) cells and levels of interferon-gamma (IFN-gamma) in a rat model of sepsis[J]. Med Sci Monit, 2019, 25:4450-4456.
[20]
Zhang ML, Wen B, Anton OM, et al. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages[J]. Proc Natl Acad Sci U S A, 2018, 115(46):E10915- E10924.
[21]
Barao I. The TNF receptor-ligands 4-1BB-4-1BBL and GITR-GITRL in NK cell responses [J]. Front Immunol, 2012, 3: 402.
[22]
Doronina VA, De Felipe P, Wu C, et al. Dissection of a co-translational nascent chain separation event[J]. Biochem Soc Trans, 2008, 36(4):712-716.
[23]
Doronina VA, Wu C, De Felipe P, et al. Site-specific release of nascent chains from ribosomes at a sense codon[J]. Mol Cell Biol, 2008, 28(13):4227-4239.
[24]
Pasero C, Gravis G, Guerin MA, et al. Inherent and Tumor-Driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity[J]. Cancer Res, 2016, 76(8):2153-2165.
[25]
Jewett A, Gan XH, Lebow LT, et al. Differential secretion of TNF-alpha and IFN-gamma by human peripheral blood-derived NK subsets and association with functional maturation[J]. J Clin Immunol, 1996, 16(1):46-54.
[1] 张燕, 粟闵, 陈婷婷, 程会贤, 陈名园, 王巍. 合体细胞滋养层细胞外囊泡阻止母体恶性肿瘤侵袭及转移至胎儿相关机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 40-46.
[2] 钟勇辉, 谢福川, 魏宜胜. 结肠癌来源外泌体对自然杀伤细胞miR-18a和NKG2D表达的影响[J]. 中华普通外科学文献(电子版), 2021, 15(03): 172-177.
[3] 曹玲莉, 涂平华, 吴展陵, 李新军. NK细胞、Treg细胞、T淋巴亚群在NSCLC外周血中表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 55-57.
[4] 刘泽, 郝言, 赵铎, 徐辉. 复方甘草酸苷对小儿哮喘T淋巴细胞及NK细胞的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 97-99.
[5] 韦先梅, 韩毓, 蒋英彩. 敲减circSERPINE2通过靶向调控miR-34a-5p表达抑制滋养层细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 193-201.
[6] 吴素馨, 叶韵斌. TCR-T治疗中靶点选择的策略[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 250-256.
[7] 刘莎莎, 孙国强, 吴利荣. 木犀草素对子痫前期大鼠滋养层细胞凋亡的影响及其机制[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 138-144.
[8] 杜为, 崔丽娟, 徐迎, 张华, 杜宏伟, 张金美, 刘容志, 王征宇, 杨文玲, 张宇. 脐带血单个核细胞诱导多能干细胞来源自然杀伤细胞的生物学特性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 329-336.
[9] 杨慧, 姚浩, 陈丹. 急性髓系白血病的细胞治疗进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 311-316.
[10] 刘鲁宁, 陈雪梅, 马恩奇, 田清艳, 刘倩倩, 刘韬. 人CD137抗体促进NK细胞对乳腺癌细胞特异性杀伤作用的体外研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 346-353.
[11] 姚惟琦, 梅恒, 石磊, 张宇, 胡豫. 新型冠状病毒肺炎细胞治疗的关键策略和研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 234-239.
[12] 谭天华, 宋京海. 肝细胞癌NK细胞及其相关免疫治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 243-246.
[13] 蔡惠宁, 钱师宇, 陈伟材, 黄梦淳, 陈文捷, 卢建溪. 体外扩增外周血NK细胞对不同肿瘤细胞系的细胞毒作用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 411-415.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 张虹, 张爽, 杨凡. 抗滋养层细胞表面抗原2靶向药:乳腺癌新的靶向治疗[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1045-1049.
阅读次数
全文


摘要