1 |
Quinn S, Lenart N, Dronzek V, et al. Genetic modification of T cells for the immunotherapy of cancer[J]. Vaccines (Basel), 2022, 10(3):457.
|
2 |
Mostafa Kamel Y. CAR-T therapy, the end of a chapter or the beginning of a new one?[J]. Cancers (Basel), 2021, 13(4):853.
|
3 |
Zhang ZZ, Wang T, Wang XF, et al. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies[J]. Pharmacol Res, 2022, 175:106036. doi: 10.1016/j.phrs.2021.106036.
|
4 |
Middleton MR, McAlpine C, Woodcock VK, et al. Tebentafusp, a TCR/Anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma[J]. Clin Cancer Res, 2020, 26(22):5869-5878.
|
5 |
Liu Q, Tian Y, Li Y, et al. In vivo therapeutic effects of affinity-improved-TCR engineered T-cells on HBV-related hepatocellular carcinoma[J]. J Immunother Cancer, 2020, 8(2):e001748. doi: 10.1136/jitc-2020-001748.
|
6 |
Wei T, Leisegang M, Xia M, et al. Generation of neoantigen-specific T cells for adoptive cell transfer for treating head and neck squamous cell carcinoma[J]. Oncoimmunology, 2021, 10(1):e1929726. doi: 10.1080/2162402X.2021.1929726.
|
7 |
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer[J]. Science, 2015, 348(6230):62-68.
|
8 |
Newell EW, Sigal N, Bendall SC, et al. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes[J]. Immunity, 2012, 36(1):142-152.
|
9 |
Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes[J]. Science, 1996, 274(5284):94-96.
|
10 |
Stubbington MJT, Lönnberg T, Proserpio V, et al. T cell fate and clonality inference from single-cell transcriptomes[J]. Nat Methods, 2016, 13(4):329-332.
|
11 |
Zhang SQ, Parker P, Ma KY, et al. Direct measurement of T cell receptor affinity and sequence from naïve antiviral T cells[J]. Sci Transl Med, 2016, 8(341):341ra77. doi: 10.1126/scitranslmed.aaf1278.
|
12 |
Azizi E, Carr AJ, Plitas G, et al. Single-Cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell, 2018, 174(5):1293-1308.
|
13 |
Linnemann C, Heemskerk B, Kvistborg P, et al. High-throughput identification of antigen-specific TCRs by TCR gene capture[J]. Nat Med, 2013, 19(11):1534-1541.
|
14 |
Howie B, Sherwood AM, Berkebile AD, et al. High-throughput pairing of T cell receptor α and β sequences[J]. Sci Transl Med, 2015, 7(301):301ra131. doi: 10.1126/scitranslmed.aac5624.
|
15 |
Santomasso BD, Roberts WK, Thomas A, et al. A T-cell receptor associated with naturally occurring human tumor immunity[J]. Proc Natl Acad Sci U S A, 2007, 104(48):19073-19078.
|
16 |
Palmer E. Negative selection--clearing out the bad apples from the T-cell repertoire[J]. Nat Rev Immunol, 2003, 3(5):383-391.
|
17 |
Germain RN. T-cell development and the CD4-CD8 lineage decision[J]. Nat Rev Immunol, 2002, 2(5):309-316.
|
18 |
Zhang H, Sun M, Wang J, et al. Identification of NY-ESO-1(157-165) specific murine T cell receptors with distinct recognition pattern for tumor immunotherapy[J]. Front Immunol, 2021, 12:644520. doi: 10.3389/fimmu.2021.644520.
|
19 |
van den Berg JH, Gomez-Eerland R, van de Wiel B, et al. Case report of a fatal serious adverse event upon administration of T cells transduced with a mart-1-specific T-cell receptor[J]. Mol Ther, 2015, 23(9):1541-1550.
|
20 |
Luo X, Cui H, Cai L, et al. Selection of a clinical lead TCR targeting alpha-fetoprotein-positive liver cancer based on a balance of risk and benefit[J]. Front Immunol, 2020, 11:623.
|
21 |
Bertoletti A, Tan AT. HBV as a target for CAR or TCR-T cell therapy[J]. Curr Opin Immunol, 2020, 66:35-41.
|
22 |
Zhang C, Tan Q, Li S, et al. Induction of EBV latent membrane protein-2A (LMP2A)-specific T cells and construction of individualiz ed TCR-engineered T cells for EBV-associated malignancies[J]. J Immunother Cancer, 2021, 9(7):e002516. doi: 10.1136/jitc-2021-002516.
|
23 |
Wagner EK, Qerqez AN, Stevens CA, et al. Human cytomegalovirus-specific T-cell receptor engineered for high affinity and soluble expression us ing mammalian cell display[J]. J Biol Chem, 2019, 294(15):5790-5804.
|
24 |
Jin BY, Campbell TE, Draper LM, et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model[J]. JCI Insight, 2018, 3(8):e99488. doi: 10.1172/jci.insight.99488.
|
25 |
Shinkawa T, Tokita S, Nakatsugawa M, et al. Characterization of CD8(+) T-cell responses to non-anchor-type HLA class I neoantigens with single amino-acid substitutions[J]. Oncoimmunology, 2021, 10(1):1870062. doi: 10.1080/2162402X.2020.1870062.
|
26 |
Linette GP, Carreno BM. Neoantigen vaccines pass the immunogenicity test[J]. Trends Mol Med, 2017, 23(10):869-871.
|
27 |
Bewicke-Copley F, Arjun Kumar E, Palladino G, et al. Applications and analysis of targeted genomic sequencing in cancer studies[J]. Comput Struct Biotechnol J, 2019, 17:1348-1359.
|
28 |
Koboldt DC, Chen K, Wylie T, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples[J]. Bioinformatics, 2009, 25(17):2283-2285.
|
29 |
Larson DE, Harris CC, Chen K, et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data[J]. Bioinformatics, 2012, 28(3):311-317.
|
30 |
Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[J]. Nat Biotechnol, 2013, 31(3):213-219.
|
31 |
Bjerregaard AM, Nielsen M, Hadrup SR, et al. MuPeXI: prediction of neo-epitopes from tumor sequencing data[J]. Cancer Immunol Immunother, 2017, 66(9):1123-1130.
|
32 |
Hundal J, Kiwala S, McMichael J, et al. pVACtools: A Computational toolkit to identify and visualize cancer neoantigens[J]. Cancer Immunol Res, 2020, 8(3):409-420.
|
33 |
Park J, Chung YJ. Identification of neoantigens derived from alternative splicing and RNA modification[J]. Genomics Inform, 2019, 17(3):e23.
|
34 |
Hashimoto S, Noguchi E, Bando H, et al. Neoantigen prediction in human breast cancer using RNA sequencing data[J]. Cancer Sci, 2021, 112(1):465-475.
|
35 |
Schrider DR, Gout JF, Hahn MW. Very few RNA and DNA sequence differences in the human transcriptome[J]. PLoS One, 2011, 6(10):e25842. doi: 10.1371/journal.pone.0025842.
|
36 |
Kleinman CL, Majewski J. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome" [J]. Science, 2012, 335(6074):1302; author reply 1302. doi: 10.1126/science.1209658.
|
37 |
Çınar Ö, Brzezicha B, Grunert C, et al. High-affinity T-cell receptor specific for MyD88 L265P mutation for adoptive T-cell therapy of B-cell malignancies[J]. J Immunother Cancer, 2021, 9(7):e002410. doi: 10.1136/jitc-2021-002410.
|
38 |
Liu S, Matsuzaki J, Wei L, et al. Efficient identification of neoantigen-specific T-cell responses in advanced human ovarian cancer[J]. J Immunother Cancer, 2019, 7(1):156.
|
39 |
van der Lee DI, Koutsoumpli G, Reijmers RM, et al. An HLA-A*11:01-binding neoantigen from mutated NPM1 as target for TCR gene therapy in AML[J]. Cancers (Basel), 2021, 13(21):5390. doi: 10.3390/cancers13215390.
|
40 |
Matsuda T, Leisegang M, Park JH, et al. Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer[J]. Clin Cancer Res, 2018, 24(21):5357-5367.
|
41 |
Chandran SS, Ma J, Klatt MG, et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA[J]. Nat Med, 2022, 28(5):946-957.
|
42 |
Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis[J]. Cell Host Microbe, 2014, 15(3):266-282.
|
43 |
Hinrichs CS, Restifo NP. Reassessing target antigens for adoptive T-cell therapy[J]. Nat Biotechnol, 2013, 31(11):999-1008.
|
44 |
Schumacher TN, Scheper W, Kvistborg P. Cancer neoantigens[J]. Annu Rev Immunol, 2019, 37:173-200.
|
45 |
Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes[J]. Science, 2006, 314(5796):126-129.
|
46 |
Duval L, Schmidt H, Kaltoft K, et al. Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma[J]. Clin Cancer Res, 2006, 12(4):1229-1236.
|
47 |
Stadtmauer EA, Faitg TH, Lowther DE, et al. Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for mye loma[J]. Blood Adv, 2019, 3(13):2022-2034.
|
48 |
Tan AT, Yang N, Lee Krishnamoorthy T, et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy[J]. Gastroenterology, 2019, 156(6):1862-1876.
|
49 |
Meng F, Zhao J, Tan AT, et al. Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expre ssed T cells: results of dose escalation, phase I trial[J]. Hepatol Int, 2021, 15(6):1402-1412.
|
50 |
Nagarsheth NB, Norberg SM, Sinkoe AL, et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers[J]. Nat Med, 2021, 27(3):419-425.
|
51 |
Leidner R, Sanjuan Silva N, Huang H, et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer[J]. N Engl J Med, 2022, 386(22):2112-2119.
|